Complete Book®

G
Engineering Students

E«iumriNq P(-:oplla
T
July2020
As Per New _
Scheme & Syllabus

AICTE Flexible Cumcula)

0 » ‘I ‘ l
.1‘ .p i].'BIB
'." x 1‘!0 ° -
s ﬂ

k .

\ :

..EJ
=
3
2y
=

e 1 SOFTWARE
hicliell ARCHITECTURES

i 111/l

Preparation & |
: : ; o ' % \Unit -1 : Overview of software development methodology and software quality
0 f t h i 5 “ 0 0 k l ‘ imodel, different models of software development and their issues. Introduction

to software architecture, evolution of software architecture, software
\components and connectors, common software architecture frameworks,
brchitecture business cycle, architectural patterns, reference model.

The Present Edition of this book SOFTWARE ARCHITECTURES Stand nit -2 : Software architecture models : structural models, framework models,
distinctly from others on account of the following salient features. {'dynamic models, process models. Architectures styles : dataflow architecture,
: MRS pipes and filters architecture, call and return architecture, data-centered
© This book Covers Complete New Syllabus as Prescribed by R.GRY: tarchitecture, layered architecture, agent based architecture, micro-services
R eiEg" architecture, reactive architecture, representational state transfer architecture
. . . R T ‘etc. ‘
@ This book is according to New Scheme & Syllabus of Examinations 7
BT T Unit .3 : Software architecture implementation technologies : Software
== JArchitecture Description Languages (ADLs), struts, Hibernate, Node JS,
IAngular JS, J2EE — JSP, Serviets, EJBs; middleware: JDBC, JNDI, JMS,

" @ This book covers each and every topic in lucid and simple language with 49" : _
questions and answer form with easy solutions. g RMI and CORBA etc. Role of UML in software architecture. -

@ This book is thoroughly revised with a view to making it more studentfri

@ This book has been presented on Teach Yourself technique with
assuming any prior knowledge of the subject.

{Unit - 4 : Software architecture analysis and design : requirements for
architecture and the life-tycle view of architecture design and analysis
; ~Himethods, architecture based economic analysis : Cost Benefit Analysis
@ This book has been presented with essentially elementary approa®ilifinethod (CBAM), Architecture Tradeoff Analysis Method (ATAM). Active

along with some Special tips onimportant topics and Diagrams. “WIReviews for Intermediate Design (ARID), Attribute Driven Design Method (ADD),

@ This booki ncludesopl At TS;JIES i ganised in toincreasing degreed! |architecture reuse, Domain-specific software architecture.

complexity, Nos of Numerical Problems with easy solution. L
T i|lUnit - 5 : Software architecture documentation : principles of sound

| documentation, refinement, context diagrams, variability, software interfaces.
{Documenting the behavior of software elements and software systems,
il |documentation package using a seven-part template.

@ We have referred to a number of bo ' SOF RE
oks on SOFTWARE
ARCHITECTURES before writing of this book. Still we would wholé = .
U\?aﬁely atch(';egt St:(‘élt_llestions for improvement offered by the readeli S Price : Rs. 100.00 (Rs. One Hundred Only)
e hope this book will meet all the requirements of the readers an g
come up to their expectations. HANIEAES i _Ed't'on : 2020

TS

@ All Questions set at examinations of R.G.P.V. Bhopal .aré inclu
Chapter-wise with Full Solutions/Answers.

Architecture reuse, Domain-specific software architecture

UNIT

ARCHITECTURES : SRR N
- e A OVERVIEW OF SOFTWARE
DEVELOPMENT AND
ARCHITECTURE

Unit - 1 : Overview of software development methodology and PAGENg' |1
software quality model, different models of software development e
S ——————L R }
Introduction to software architecture, evolution of software
architecture, software components and connectors, common

SOftware arChiteCtUre fraMEWOTKS i s Stoanll QVERVIEWOFSOFI'WARE DEVELbPM_ENT METHODO]_OGY
Architecture business cycle, architectural patterns, reference | AND SOFTWARE QUALITY MODEL, DIFFERENT MODELS OF
model , S 1 PO W LS. ¥ SO 0. Sl - N (22to30)| SOFTWAF 7

TWARE DEVELOPMENT AND THEIR ISSUES .

Unit - 2 : Software architecture models : structural models, o
framework models, dynamic models, process T14[0[0]= [TR — (31 to 41)
Architectures styles : dataflow architecture, pipes and filters '

Qj@Discuss the software development methodology.

Ans. Architecture development and its component, structural modeling,
architecture, call and return architecture, data-centered flare members of a family of methodologies used in a defined, repeatable,
architecture, layered architeCiUrE e (a2to 54| MPTOVaLIe software development process. A methodology should spell out
Agent based architecture, micro-services architecture, reactive #lgeneral steps to follow. It should be specific enough to give guidance but be
architecture, representational state transfer architecture etc........... (54 to 72jjjgeneral enough to apply to most software situations. It should not be taken as
' E = l]a step-by-step way to develop entire systems; these recipes for how to get the
Unit - 3 : Software architecture implementation technologies : H{work done simply do not exist. Management needs to realize thata directive to
Software Architecture Description Languages (ADLs), struts, : | “use Schlaer & Mellor” or “use a structural model” has about the same content
Hibernate, Node JS, ANGUIAT JS wrmmsrersssssrsssssmmmsmssssssssssasssssssesssssees (730 90)}{as a directive to “use an oscilloscope™. :
J2EE — JSP, Serviets, EJBs; middleware: JDBC, JNDI, JMS, 1 The systems approach to software development concentrates on the total
RMI and CORBA etc. Role of UML in software architecture............ (90 to 136)}{ system over its whole lifecycle. It add- '
: ~ Mresses quality characteristics, methods,
Unit - 4 : Software architecture analysis and design : Hland standards, and provides a roadmap
requirements for architecture and the life-cycle view of _||that integrates them into the whole.
architecture design and ana}ysis METNOAS sosxssrerssmssseesressamrassnsssanaranss (1 37to 143) ; Fig. 1.1 illustrates this concept. These
Architecture based economic analysis : Cost Benefit Analysis ~ l|components address all the considera-
Method (CBAM), Architecture Tradeoff Analysis Method (ATAM). |l tions needed for software development.
Active Reviews for Intermediate Design (ARID), Attribute Driven || The lifecycle describes the phases in
Design Method (ADD) ceeerssmsssmssesessssissssssssssssssssssssssassssassssssss serasssasssses (143t0151) which software development takes
) | place. Quality characteristics define the
1l attributes that the software must exhibit
Al in order to reach the software goals. The
#l methods are the procedures employed

Roadmap
B

...........

Unit-5: Softwarg architecture documentation : principles of
sound documentation, refinement, context diagrams, variability,

software i §
Docun:z :wr'::eﬁ?r?es 1 4 in software development. The standards
ng the behavior of software elements and software H arc used to guide and evaluate the

s . .
ystems, documentation package using a seven-part template...(161 t0 158' software development process.

Fig. 1.1 Components of a
Software Dévelopment
Methodology

I

i

.

il

4 Software Architectures

Y The software standards component of the methodolo
consistency in the software development process. Each
addr‘esses the style and layout of the code. These standards are u
a guide as well as a review tool. The following elements expound tlsed oot
that_ a'deﬁned methodology might commonly include. Théy can b]e
a minimal requirements set for a software design methodology. The
elements include (a) structural model, (b) data structure mode]
standard, and (d) verification standard. It is imperative that each’
followed exactly and enforced during each design review. Then a:
the. program these guides will be the most important docume
maintenance of the software system.

gy Provideg

standﬂ A
€ treaeq

0.2. How can software architecture 1 4
0 : 1 re play an important role in s,
development ? oo

Ans. Software architecture can play an important role in at least s
of software development as follows —

bes‘.c, architectural description exposes the high-level constraints on system
design, as well as the rationale for making specific architectural choices..

and also frameworks into which components can be integrated. Domain-spec
software architectures, frameworks, platforms and architectural patterns arg

as . _ 5 % W 2 & s l * ; , 4
(iii) Construction — An architectural description provides a patiall . . 4 . qofined in detail and serve as a system specification.

blueprint for development by indicating the major components and dependencies
between them. For example, a layered view of an architecture typically

i 2 - il
documents abstraction boundaries between parts of a system’s implementationg
identifies the internal system interfaces, and constrains what parts of 2 systemy

may rely on services provided by other parts.

(iv) Evolution — Architectural design can expose the dirnensions‘ ‘along;
which a system is expected to evolve. By making explicit a system’s load-h

bearing walls”, maintainers can better understand the ramifications
and thereby more accurately estimate costs of modifications. In many ¢
such evolution and variability constraints are manifested in
frameworks and platforms, which dictate how the system can
or adapted through the addition of application-specific features and com
(v) Analysis — Architectural descriptions provide opportun!
analysis, including system consistency checking, conformance 1o €O
imposed by an architectural style, satisfaction of quality attribute
specific analyses for architectures built in specific styles.

of tlle Standa. Vi ‘
_‘ | software architecture is a key milestone in an industrial software development
o process. Critical evaluation of an architecture typically leads to a much clearer
| understanding of requirements, implementation strategies, and potential risks,
generaljpes 3
(c) codigy | lifecycle.
tandarg |
the end of

nts in e .
n the of embedded systemn, because some software-enhancement techniques are so

' expensive or time consuming that it is not practical to apply them to all modules.

which a system’s high-level design can be easily understood. Moreover, atits.

asesy

product linesif
be instantiateq
poneﬂl-‘* i
ities fork

nstraint8}
s, and domaify

Overview of Software Development and Architecture 5

(vi) Management — For many companies the design of a viable

reducing the amount of rework required to address problems later in a system’s

Q.3. Write short note about software quality models.
Ans. Software quality models can be valuable tools for software engineering

¢ Targeting such enhancement techniques is an effective way to reduce the

4 | likelihood of faults discovered in the field.

iX aspecty
. ; M from a past release. The calibrated model is then applied to modules currently - -

() Understanding — Software architecture simplifies our ability 1

comprehend large systems by presenting them at a level of abstraction -".

A software quality model is developed using measurements and fault data

under development. Such models yield predictions on a module by module basis.

Q.4. Explain the waterfall model. (R.GRV,, June 2011)
Ans. The waterfall model or the classic life cycle is sometimes called the

| linear sequential model. It suggests a systematic approach to software

; : : : - I development that begins at the system level and progresses throug analysis,
(i) Reuse — Architectural design supports reuse of both components P gl Sy progre gh Y

design, coding, testing, and support. The principal stages of the model as

1 shown in fig. 1.2 are explained as follows —

various enablers for reuse, together with libraries of plugins, add-ins and apps: : : . .
| constraints and goals are established by consultation with system users. They

(i) Requirements Analysis and Definition— The system’s services,

3
|

Requirements
Definiti

Systearand
Seftware Design

Integrationr=and
System Testing

Gperationand=
Maintenance

Fig. 1.2 Waterfall Model

6 Software Architectures

(ii) System and Software Design —
partitions the requirements to either hardw
establishes an overall system architecture. Softw
and describing the fundamental softw
relationships.

(iii) Implementation and Unit Testing — Durin
software design is realized as a set of programs or program
involves verifying that each unit meets its specifications.

software requirements have been met. After testing
delivered to the customer.

system’s services as new requirements are discovered.

Q.5. What are the advantages of the waterfall model ?

(1) Relatively simple to understand.

set for each stage of development.

is difficult to incorporate changes.

(iii) No user involvement and working versio
available when the software is developed.

(iv) Does not involve risk management.

(v) Assumes that the requirements are stable and are
the project span.

The systems design
are or software sygtq
are design involveg iden
are system abstractiong and the

(iv) Integration and System Testing — The individual program uy
or programs are integrated and tested as a complete system to ensure that

Ans. There are following advantages of the waterfall model —

(ii) Each phase of development proceeds sequentially.
(iii) Allows managerial control where a schedule with deadlines

(iv) Helps in controlling schedules, budgets and documentation.

Q.6. Write out the reasons for the fuilure of waterfall model. .‘
(R.GPYV., June 201%

Ans. The reasons for the failure of waterfall model are given below “
(i) Requirementsneed to be specified before the development proceseas

(i) Changes of requirements in later phases of the wate_:rfa
cannot be done. This implies that once an application is in the testing

n of the softwares

mg,
tify;

(v) Operation and Maintenance — Normally this is the longest Ji 4
cycle phase. The system is installed and put into practical use. Maintenan,
involves correcting errors which were not discovered in earlier stag‘es' oft
life cycle, improving the implementation of system units and enhancing the! |

11 mot&y
phasﬁ'

e

S

frozen BCTOSE

Pl'()ceS-

[

i
)

|
!

Qverview of Software Development and Architecture 7

| 0.7. What is prototype model ? Under what circumstances it is beneficial

"\ to construct a prototype model ? Does the construction of a prototype model

| always increase the overall cost of software development ?
,‘ (R.GPV., June 2003, Dec. 2015)

Ans. As shown in fig. 1.3, the prototype model begins with requirements

g,this stage t_' gathering. Developer and customer meet and define the objectives of the
units. Unit test] i software, identify the requirements known and outline areas where further

%

| definition is mandatory. A “quick design” then occurs. The quick design focuses

B

. |on a representation of those aspects of the software that will be visible to the
Iis?
the!

» the software system jgt

customer/user (e.g., input approaches and output formats). The quick design
leads to the construction of a proto-
type. The prototype is then evaluated
by the customer and used to refine
requirements for the software to be
developed. The prototype serves as
a mechanism for identifying software
requirements. If a working prototype
is built, the developer attempts to use
existing program fragments or applies
{tools that enable working programs
{to be generated quickly.

Listen to
Customer

Build /Revise
Modg-up
A

Customer
Test Drives

Fig. 1.3 Prototype Model

Although having some problems in its implementation, prototyping can
be an effective model for software engineering. For having its effectiveness,
one should define the rules in the beginning i.e., both the customer and the

|requirements. Afterwards it is discarded and the actual required software can-

: ‘ be engineered having an eye toward quality and maintainability.

! When your customer has a legitimate need but is clueless about the details,
|develop a prototype as a first step.

3
i Though it is not cost effective, yet it is useful as it helps to build a software
whose complete requirements are not specified or is clueless. It is the prototype .

that helps to identify software requirements with an eye towards quality and
maintainability,

For prototyping for the purposes of requirement analysis to be feasible its-r
cost must be kept low. Consequently, only those features are included in the

prototype that will have a valuable return from the user experience. Exception

{handling, recovery and conformance to some standards and formats are
typically not included in prototypes. In prototyping, as the prototype is to be
discarded, there is no point in implementing those parts of the requirements
fhal are already well understood. Hence, the focus of the development is to
include those features that are not properly understood.

developer must agree that the prototype is built as a mechanism for defining)

e

IR ¢ 1= b
IR il
SR T A TS T

Wy o

8 Software Architectures

Prototyping is often not used, as it is feared that develo
be.com_e large. However, in some situations, the cost of software ¢
without prototyping may be more than with prototyping, The gh

reasons for this. First, the experience of developing the proto

Pment COSls ;

the cost of the later phases when the actual software developmeny
Secondly, in many projects the requirements are constantly changin ! 'S dop
when development takes a long time. We saw earlier that changes ingr’e,paljtlcmalrl
at a later stage of development substantially increase the cost of the qllifemem -
elongating the requirements analysis phase, the requirements are “ﬁl?goje?,t B
later time, by which time they are likely to be more developed and fcons:en 5 ;
more stable. In addition because the client and users get experience \?;liltzn“}é
system, it is more likely that the requirements specified after the prototyp lhe |
be closer to the actual requirements. This again will lead to fewer changes :E% !

requirements may be substantially reduced by prototyping. Hence, the cost of
the develppment after the prototype can be substantially less than the cost withoul
prototyping. Prototyping is well suited for projects requirements are hard fo

determine and the confidence in the stated requirements is low. |

0.8. What are the advantages and disadvantages of prototype model.?!g

Ans. The various advantages and disadvantages associated with'thg‘
prototype model are as follows — T 2l

Advantages —

(i) Provides a working model to the user early in the procq;é !
1| is required ? What information is generated ? Who generates it ? etc.

enabling early assessment and increasing user confidence.

(i) The developer gains experience and insight by developiﬂg.‘:‘iﬁ

prototype, thereby resulting in better implementation of requirements. . ‘
hence}

(iii) The prototyping model serves to classify requirements,

reducing ambiguity and improving communication between the developer ait |

Y
]
i |

the user.

. . ; : entf
(iv) There is a great involvement of users in software developmeE) b y § .
H generation techniques to facilitate construction of software. Rather than creating

) Belpsinrecucing risks associated with the project. 4l software using conventional third generation programming languages the RAD

Hence, the requirements of the users are met to the greatest extent.

¥

£

Disadvantages —

. y) e
(i) If the user is not satisfied with the developed prototyp¢ :2
new prototype is developed. This process goes on until a satisfactory Pr0 ‘YV%
evolves. Thus, this model is time-consuming and expensive.

comprises on the quality of product.

I'¢ are lwo mai i
. U]
type might tedyel

i
-~ &l
1
i
4
B
&
|
|
.

B

Overview of Software Development and Architecture 9

(iii) Prototyping can lead to false expectations. It often creates a
situation where the user believes that the development of the system is finished
when it is not. . .

(iv) The primary goal of prototyping is rapid development. Thus,

&) lthe design of the system may suffer as it is built in a series of layers without
|considering integration of all the other components.

0.9. Explain RAD madel. Write different drawbacks of RAD model.
(R.GPYV.,, June 2015)
Or
Write a short note on RAD model. (R.GFV., June 2005, Dec. 2009)
Ans. Rapid application development is an incremental software

3 requirements at a later time. Hence, the costs incurred due to ch . development process model that has extremely short de-velopment cycle. It is
anges in thef a high speed version of the linear sequential model in which rapid development

[t |is achieved by using component based construction. If requirements are well

understood and project scope is constrained, the RAD process enables a -

| development team to create a fully functional system within 60 to 90 days.

The phases of RAD approach are (see fig. 1.4)—
(i) Data modeling
(iv) Application generation

(i) Business modeling
(iii) Process modeling
(v) Testing and turnover.

(i) Business Modeling — The information flow among business
functions is modeled in a way that answers some questions as —what information

(ii) Data Modeling — The information flow defined as part of business
modeling phase is refined into data objects to support business.

(iii) Process Modeling —The data objects defined in the data modeling
phase are transformed to achieve the information flow necessary to implement
a business function. ;

(iv) Application Generation — RAD assumes the use of fourth

process works to reuse existing program components. (when possible) or

4 a create reusable components (when necessary). In all cases, automated tools
| 1 a

re used to facilitate construction of the software.

(v) Testing and Turnover — Since the RAD process e'mphasized"’
| reuse, many of the program components have already been tested. This reduces

(i) The developer loses focus of the real purpose of prototyP® == overall testing time.

s

o

St

10 Software Architectures

Team #3 “ Overview of Software Development and Architecture 11

Bursiness
Medcling

Trami#2 (iii) Not appropriate when technical risks are high. This occurs when
ihe new application utilizes new technology or when new software requires a
high degree of interoperability with existing system.

(iv) As the interests of users and developers can diverge from single
literation to the next, requirements may not converge in RAD model.

Business
Modeling

Team # 1

Data
Modcling

Business
Modeling

0.10. Explain increamental model in detail. ~ (R.GEV., June 2016)

Ans. The incremental model combines elements of the linear sequential
model with the iterative philosophy of prototyping. As shown in fig. 1.5, the
! lincremental model applies linear sequences in a staggered fashion as calendar
| |time progresses. Each linear sequence produces a deliverable “increment” of
| lthe software. When an incremental model is used, the first increment is often
‘g la core product. That is basic requirements are addresssed, but many
! [supplementary features remain undelivered. The core product is used by the
3 | |customer. As a result of use and/or evaluation, a plan is developed for the next
|
3

Process
Modeling

Data
Modeling

Application
Generation

Process
Modeling

lincrement. The plan addresses the modification of the core product to better
| Imeet the needs of the customer and the delivery of additional features and
| (functionality. This process is repeated following the delivery of each increment,
' |until the complete product is produced. For example, word-processing software

Application
Generation

it s A B

“hﬂ!“'

Testing | |developed using the incremental paradigm might deliver basic file management,
Thrfover I |editing and document production functions in the first increment, more

sophisticated editing and document production capabilities in the second

.| lincrement, spelling and grammar checking in the third increment and advanced

[|page layout capability in the fourth increment. The process flow for any
% ; increment can incorporate the prototyping paradigm.

60-90 Days
Fig. 1.4 The RAD Model

Advantages — : o
(i) Deliverables are easier to transfer as high-level abstractionsil | /Systamiinformation s Increment 1
scripts, and intermediate codes are used. th‘ | /[nalysis | 8] Design e Test | Delivery of
(ii) Provides greater flexibility as redesign is done according t0 ‘?: Ist Increment
developer. :
. : : 5|
(iii) Results in reduction of manual coding due to code general0 1| | ncrement 2| Analysisf-»{ Design f| Code fof Test | Delivery of
p _ 1 | 2nd Increment
and code reuse. 1
- 3 1 Increment 3| Analysi Desi Cod T i
. ‘B ysis esign ode est Delivery of
(iv) Encourages user involvement g 1 3rd Increment
(v) Possibility of lesser defects due to prototyping In nature. |
. 3 Increment 4 | Analysis f=s Design Code Test Delivery of
Disadvantages — 1 4th Increment - -
e (i) Useful for only larger projects. topéll | Calendar Time
. . . deve i ;
(ii) RAD projects fail if there is no commitment by the | Fig. 1.5

or the users to get the software completed on time.

e

12 Software Architectures

The incremental process model, like prototyping and oth
approaches, is iterative in nature. But unlike prototyping
model.focuses on the delivery of an operational product witfl each j
Early increments are stripped down versions of the final produ e
do pl’O\{lde capability that serves the user and also provide 3 ?t’ i t
evaluation by the user. Incremental development is particular] P
staffing is unavailable for a complete implementation by the bus}i(e g
that has been established for the project. Early increments can be 2088 deagy

Overview of Software Development and Architecture 13
T evolyty

the increIne ; Ans. Boehm proposed a recent model for software development process

own as the spiral model. It is an evollution_ary software process model th'fu
uples the iterative nature of prototypm_g 'w_lth_the E:ontrolled and systergatm
pects of the waterfall model. All the activities In this model can be organized
a spiral which has many cycles, as shown in fig. 1.6.

i

;
1

. : im ;

with fewer people. If the core product is well received, then additli];emen &

can be added to implement the next increment. In addition i nal gty i 7
be planned to manage technical risks. ? MEng gyt

Detailed
Design
i

Evaluate-Alternatives,
Identify, Resolve Risks

0.11. What are the advantages and disadvantages -
of th !
model ? B cremeng s

€,
ducef....
Sig

3

ges of the incremepy 3

(ll'(',lr

Ans. There are following advantages and disadvanta

Off

Simulations, Models, Benchmarks

£ el
r ==
Advantages — !

Software,
Requiregmbnts

Develop, Verify
Next-level Product

(i) Requires planning at the management and technical le\{el. 3
(i) Becomes invalid when there is time constraint in the proJ

(1) Avoids the problems resulting in risk-driven approach in the soﬁwﬁﬁ £5a § £E
- " N iy = = 1 ==
(1) Understanding of the problem increases through successiy i iz ! am gl 2E \oop- 3
- HE_ &% - E8 =% £ = E
refinements. | G { =% %\ =2 2g g i
: : tEC 4 | | | s P28 =2\%= 232 ==
(i) Performs cost-benefit analysis before enhancing software wit £ / Z 1 508_ §>“ =5 E* 3
capabilities. - 5 =
| . g E a
(iv) Incrementally grows in effective solution after each multiple iterationf \ LY - S g ?
: - . ; &= zZ 3 = =
(v) Does not involve a high complexity rate. i § g B = &~
. . . i 5 o = == = A=)
(vi) Early feedback is generated, because implementation occusy| EIEd 5 =F E -
: ‘ = g
rapidly for a small sub-set of the software. 3 g§ gs.s 5 -E.f
- b 2 = = -
(vii) There is a low risk of overall project failure. i i & g
. 1 2
Disadvantages — , F
i

schedule or when the users cannot accept the phased deliverables. b fé%
ot} | Ly
Q.12. Explain the spiral model. (R.GPV,, Dec. 2002, June 2 | o5
Or Tt 4\ ;.E..% E =
With suitable illustration explain SPIRAL model evolutionag;"f;w ﬂj | E g ,E 2
development. . (R.GEV., Dec ' 4 § Kl
Or

o s ototyPIE
Explain the process model that couples the iterative nature of pr 2

with the controlled and systematic aspects of the wate(rilg ;';:ie;ec. 91' |

Review

S=N 14 Software Architectures

In this mod ial di

el, the radial dimensij ¥

nsion represents the cumulative Overview of Software Development and Architecture 15
081 | .

8 In acco ishi 3
‘ the prog:g;lssﬁl]nﬁ lhle steps dope so far and the angular dimey;
15 ess made l'l'l c.ompl‘etmg each cycle of the spira]. | NSiop
. egins with the identification of objectives [piral. Each
alternatives that are possible for achieving the (anjeocrﬁl\l,1

e (vi) The spiral model is a realistic approach to the development of
i
at cycl Yele ini' lgrge scale systems and software.

yele, the gjgg, 1 (vii) This model reduces risk.

© and consiyyjy

are exist. It is the upper left or fi
1rst L of t :
next step is to evaluate these diﬁ’ereutczllllltE:adral:'1 by el the ey . - -
- ; rnatives base e i ject 1 " e o é
pnstraints, Tn this stsb, focus of eyl emrisifime ((i)l?lhlhe ObJeCtives") Assessment of project risks and ;ts reso(;utlor? lslxllo;an‘eas-y ask i
he risk 3 (ii) Difficult to estimate budget an schedule in the beginning, as S

Percep .
Rl not done until the design of the software is developed. =

Tor the] i i
rr -ll'lt,- project. Risks reflect, the chances that some of the objecf;
project may not be met. To develop strategies is the next steg tileCll_ves_ g
T e [hat

&

sbme of the analysis is

~ INTRODUCTION TO SOFTWARE ARCHITECTURE, =
'EVOLUTION OF SOFTWARE ARCHITECTURE, SOFTWARE
COMPONENTS AND CONNECTORS, COMMON SOFTWARE:
" ARCHITECTURE FRAMEWORKS

The risk-driven nature of tl i :
_ he spiral model allows it to

; ¢ ; acco {

mlxl"urer of a specification-oriented, prototype-oriented simulatiolﬁmo.cI 4

son]]e oth]er t%qi]e of approach. The most important feature of the rr;gcrllelm
each cycle of the spiral is complet i ;

developed during that cycle illfx)chii(ili)gy ;1;;31:]?:; tﬁ]if covers all e g Ans. Software architecture represents the overall software structure and

model works for development as well as enhancementn eiit'CYCIC- :T'h : p e il S i e

, projects. .5 74 System. Generally, architecture is the hierarchical program components. -

The spiral model i o S
slys tzms arl;d sofrw(ii -IS ;ezza:j;zhgoaf;t)g;?:cgvz :{l:: (;thi;)]:?::g;;f;i;ggr : _fay Bass, Clements, and Kazman define software architecture in the follow
the ; -
evolufi\;i[:ge;eilj %f;osm ?:a]b ette; !}.lndersrtand and' reacl.ip .nSkS aLes The software architecture of a program or computing system is the . -
et biit 0' : p model uses prototyping as a risk red structure or structures of the system, which comprise software components,
 TGIEImPorEeL Snab/eh din developar (agplyihag rotqtyp e externally visible properties of those components, and the relationships -

approach at any stage in the evolution of the product. It maintains the syst

stepwise approach suggested by the classic life cycle but inco:porates' it Y . s . ;

an iterative framework that more realistically reflects the real world. The sp s Of.SOftware. design process is to derive an sxchitectutel rendleritng
d : 2 3 ; | i of a system which provides a framework from which more detailed design

model demands a direct consideration of technical risks at all stages O] . .o "o performed

project and, if properly applied, should reduce risks before they becomif] j ‘ .

properly app .y . Following are the set of properties that should be specified as part of an

architectural design — i '

* problematic.
/ - - »
Q.13. Write the advantages and disadvantages of the spira (i) Structural Properties — These are the properties which define
he system components and the way those components are packaged and interact.

- Ans. There are following advantages and disadvantages of the spiral mod ’

Q.14. What do you understand by software architecture.

sl g

ing

mong them.

1 model.

(i) Extra-functional Properties — These properties of an
architectural design address how the design architecture achieves requirements

Advantages —
for performance, reliability, adaptability, capacity, security, and other system

(i) Avoids the problems resulting i

(ii) Specifies a mechanism for software quality assurance
(iii) Is utilized by complex and dynamic projects.
(iii) Families of Related Systems — The architectural design should
|draw upon repeatable patterns found in the design of families of related systems.

(iv) Re-evaluation after each step allows ¢
perspectives, technology advances or financial perspectives. o
tic as the ¥ | [n short, the design should be able to reuse architectural building blocks:

(v) Estimation of budget and schedule gets realis
progresses.] |
b

n risk-driven approach inthe softw
activ!

11 characteristics.

hanges i L&

16 Software Architectures

Q.15. What does a good software architecture look i, »
. e
Ans. Some points of a good sofiware architecture are ag

(i) A good architecture is rational. It should
repeatable and improvable process for building out a
product family.

- (1) A good architecture is affordable. It must be “effj
in both time and memory. It must support large-scale cogt

improvements in both the short term and the long term Anda‘n 4 so
been defined, published, and demonstrated to work in or;ier A 1t mustﬁ

.. - rEd
(iif) A good architecture takes into account the comp]et Uc-e i
the problem. It must address visibility, interprocessor e

andl memory requirements, frame balancing and pro
testing and debugging.

Promote ang g
specific men.lb“lJ
Cr

CommuﬂiCationsg;‘ ;
cessor ba]ahcjng

(iv) A good architecture is consistent and enforces an i
contract between loosely coupled component models g
subs.ystems to be developed independent of the source o‘f
destination of the outputs. It should allow new im
be integrated into existing specifications.

It should Pélml
the inputs ang)

(_r) A good architecture encourages early development. In the oa
f’f data vords,- systems for which data is missing can be stubbed éﬁ
interface specification defines what must be known later about the sys

5 : (vi) A good architecture promotes system 'u_nderstanding-‘ ‘I:tﬂm"
: look like” the problem space in some significant sense. It must be clear
it must clearly meet both user and end customer requirements. Its qualfty a

engineering principles.

(vii) A good architecture is a good citizen. It should not viol

in the community. It should be available in the public domain rather than
bound to a proprietary hardware or software system. And it must take f}d"an.,ta

ISO communications protocols.

Q.16. Enumerate the important properties of software architectil
flns. Software architecture is the high-level structure of a software SR
The important properties of software architecture are as follows —

_ (i) It is at a high-enough level of abstraction that the system ¢
viewed as a whole.

y

follows; K .

|

lCient engd

plementations of systens|
F; RER

1

style should match what are considered sound systems and_softwat

company or customer standards. It should be broadly accepted or aCCGPtf’Jj

.i,
Ll

of military and international standards like the Ada programming languaged!

Overview of Software Development and Architecture 17
(i) The structure must support the functionality required of the system.

Thus, the dynamic behaviour of the system must be taken into account when

‘designing the architecture.
| (iii) The structure or architecture must conform to the system qualities.

(iv) At the architectural level, all implementation details are hidden.

0.17. What are the important elements of software architecture ? Explain.
Ans. The important elements of software architecture are as follows —

(i) Meta Architecture — The architectural vision, style, principles,

' 'cy communication and control mechanisms and concepts that guide the team

i

" of architects in the creation of the architecture.

(i) Architectural Views — Just as building architecture are best
' énvisioned in terms of a number of complementary views or models, so too
dre software architectures, and these include structural views, behavioural
views and execution views. _

(a) Structural Views — These help document and communicate
he architecture in terms of the components and their relationships and are
seful in assessing architectural qualities like extensibility.

{ (b) Behavioural Views — These views are especially useful in
;ssessiug run-time qualities such as performance and security. These views
‘leo useful in thinking through how the components interact to accomplish
their assigned responsibilities and evaluating the impact of what-if scenarios

{

B
o

on the architecture. :
g (c) Execution Views — These help in evaluating physica
istribution options and documenting and communicating decisions.

(iii) Architectural Patterns — Structural patterns such as layers and
lient/server, and mechanisms such as brokers and bridges.

(iv) Architecture Design Principles — The architectural design
principles involve abstraction, postponing decisions, separation of concerns
‘and simplicity.
(v) System decomposition principles
(vi) Good interface design.
. Q.18. What are the major benefits of software architecture ?
Ans. The major benefits of software architecture are as follows —

description of the high-level properties of a complex system.

(i) Development — 1t is important to be able to recognize common
aradigms so’that high-level relationships among systems can be better
lunderstood and so that new systems can be built as variants of old systems.

An architectural representation is often essential to the analysis and

18 Software Architectures

(i7) Maintenance — Documenting a system’s structure ang
in a rigorous way has obvious advantage to maintenance, Prop,
In addition, retaining the designer’s intentions about
should. help maintainers preserve the systems design inte

Overview of Software Development and Architecture 19

Q@I.\}Explu‘in the esﬁtza}!}on of software architecture.
Ans. Architecture evaluations can be performed in one or more stages of
a software development process. They can be used to compare and identify
engths and weaknesses in different architecture.altérnatives-during ffic early
o | designstages. They can also be used for evaluation of existing systems before
m ture maintenance orFenhancement of the system as well as for identifying
irchitectural drift and erosion. Software architecture evaluation methods can
e divided into four main categories. Methods=insthe-eategories=can=be=used—
mdependently.but also'be combined-te-evaluatedifferent.aspectsofasoftware
architectiire;=if ficeded:

SYStem gpgy . I
gllty gﬁnlzﬂ. §

Pports OPtimjyay: Y.

: t
nd security ccmcl

g stakeholde,,

S bageq.
stem undey developlen

(iii) Optimization — Software architecture sy
components w.r.t. e.g. performance, fault tolerance g

(iv) Communication — Communication amon
an explicit description of high-level abstractions of the sy

(v) Early Design Decisions — These influe
attributes.

need by drivigg g

Q.19. Describe the objectives of sofiware architecture.
Ans. The objectives of software architecture are as follows —

_ (i) Customer Concern — This concern involves schedule and by
estimation, feasibility and risk assessment, progress tracking and requirey
traceability. g

: DExp_erience based evaluations are based on the previous experience and

qomain knowledge of developers or consultants. People who have encounterqd

the requirements and domain of the software system before can based on the
1revi0us experience say if a software architecture will be good enough.

_)Simulation—based evaluations relfera-highlevelimplementatien-ofsome

all-of:thescomponentssin:the:software-arehitecture: The simulation can then-
e used to evaluate quality requirements such as performance and correctness
f the architecture. Simulation can also be combined with prototyping, thus

{rototypes of an architecture can be executed in the intended context of the
ompleted system.

(i) User Concern — This concern includes consistency
requirements and usage scenarios, future requirement growth accommo
performance, reliability and interoperability, :

(iii) Architect Concern — This concern includes requirerhent ‘
bility, support of trade off analyses, completeness and consistency of archi

"
gLt

) Mathelhatiggl-inodelling uses mathematical proofs and methods - for
. . p ; .| evaluating mainly operational quality requirements such as performance and -
desi ?v) Developer C't;!ncern — This concern H?Cqule? sufficient ‘_je’ta'] ' behaviour of the components in the architecture. Mathematical mbd;lling is

esign, reference for selecting components and maintain interoperabili 1} similar to simulation and can be combined with simulation to more accurately
existing systems. : timate performance of components in a system.

@ Scenario-based architecture evaluation tries to evaluate a particular quality
attribute by creating a scenario profile which forces a very concrete description
‘0f the quality requirement. The scenarios from the profile are then used to go
hrough the-software architecture and the comssquenees are documented.

)
A oustome
0.22./Define the terms components and connectors.

e

(v) Maintainer Concern — This concern includes guidance’
software modification and architecture evolution
existing systems.

, maintain interoperabilit

Q.20. Write the role and responsibilities of a software architect. i
Ans. The software architect role is new enough that there is consid.ﬁIa ’
debate about what constitutes the role. A simplistic view of the TOle,'
software architects create software architectures, and their resp01151b
éncortipass all that is involved in doing so.
Few major roles of software architect includes the following —

(i) Articulating the architectural vision.

o .. - : : : ite
(i1) Conceptualising and experimenting with alternative archi :
approaches.

Ans. Components — It represent the primary computational elements
‘and data stores of a system. Intuitively, they correspond to the boxes in box-
and-line descriptions of software architectures. Typical examples of components
nclude such things as clients, servers, filters, objects, blackboards, and
atabases. In most ADLs components may have multiple interfaces, each
Interface defining(a point of interaction between a component and its
nvironment. Bieeks laclona) O Q&Q‘(‘\Y“H‘m \rcma vaged ~
fic ot | Connectors — It represent interactions among components.
(iii) Creating models and component and interface specl Computationally speaking, connectors mediate the communication and
documents. oordination activities among components. That is, they provide the “glue”

ot : mpt
(iv) Validating the architecture against requirements and ass!

ST

g‘i“.‘i’ﬁ BT

e

L

i3

S
iy,

T R S

R TS A TP T P o e

El

20 Software Architectures

Overview of Software Development and Architecture 21
for architectural designs, and intuitively, they correspond to H:ﬁr_._balm, in by . ey dasiaried s iz o
and-line descriptions. Examples include simple forms of interaction, m:n:m , Ev.ruu.a..m_z - _lm...u\wa by mlu ,M_Fm_ﬁ MM M. WWMMM_OE (virtual
pipes, procedure call, and event broadcast. But connectors may alsg represey Sc_:_am.v that ::_m__zawu SmiEHIAoH Spechissbelo YL e,
more complex interactions, such as a client-server protocol or a SQL [j; Kk ngendering por@biliy.-
between a database and an application. Connectors also have interfaceg tigh | E _naa%:s_vua_.s__.aaaﬂ_ Allocation
define the roles played by the various participants in the interaction rep
by the connector.

resentedl i
§ 5 1 >mmﬁw.ﬂm=n
Systems represent configurations (graphs) of components and connectorg
In modern ADLs a key property of system descriptions is that the Overa|
topology of a system is defined independently from the components and|
connectors that make up the system. (This is in contrast to most programming|
language module systems where dependencies are wired into components vig|
import clauses). Systems may also be hierarchical - components and connectors |

Fig. 1.7 Common Software Architecture Structures
may represent subsystems that have “internal” architectures. i ‘
(ii) Component and Connector Siructures — Heretie-elements:are..

0.23. How are components and connectors are related to software| intifies-(which-aresthe prinéipalunits-ef-cortputation) and conneetor-(which-
architecture ? Justify your answer. R i . i

- arethe:communication:zvehicles- amongEconipénents). These structures include
Ans. Software architecture is commonly defined in terms of components| the following —
and connectors. Components are identified and assigned responsibilities that| (a) Process or- Commmnicating Processes — The)
client components interact with through “contracted” interfaces. Component laxe processes arthireads=tiat are connected with each other by communication,
interconnections specify communication and control mechanisms, and support | synchronization, amd/or exclusion operations.

all component interactions needed to accomplish system behaviour. ‘# "(b) Concurrency — The concurrency structure is used gabydn

X . ; S| R identi i i e issues associated with
: m..nw.,wbmmn:wm the common software architecture frameworks. .~ [(d€5ign to identify the requirements for managing th

= .. i 2 flconcurrent execution.
Ans. Architecture structure can be divided into three parts as described |

below — M (c) Shared Data — This mﬁanﬁm oonhwmmmm
() Module Structure — Here the elements are modules, whichtarejf{components and connectors that create, store, and access @mﬁﬁoﬁ ;
units of implementation modules represent a code-based way of considering (d) Client-server — H.Em wm. sw.mmm_. for separation of concerns:
the system. They are assigned areas of functional responsibility. Therezissless ?:Eo:mum Bom.mmmdm:ﬁéu for physical distribution, and for load balancing
-emphasis-on-how:thestésulting-softiware manifests=itself-ataruntime. (supporting runtime performance). s
Module-based structures include the following — iii) Allocation — Allocation structures show the R_mm.oumg,u.w@?no:
(2) Decomposition — The units are modules related to each jithe software elements and the elements-insone-ormore-extefhalenviromments..

other by the “is a submodule of” relation, showing how larger modules ar¢fi!n which the software is created and executed.

decomposed into smaller ones reeursively until they are small enough t0 be These structures include the following —

easily understood. (a) Deployment — This view allows an nnmmzmmu to Hmmmo% about
(b) Class — The module unit in the structure are called classes: fiperformance, data integrity, availability, and mnoEHw..IV PO Y A

The class structure allows us to reason about re-use and the incremental (b) Implementation — This is eritreal for the management 0

addition of functionality. | | || development activities and builds processes. . ibility

(c) Uses — The units are related by the uses relation, One :::,. (¢) Work Assignment — This structure mmmuum_m.cmSHMm_uMM_BmE
uses another if the correctness of the first requires the presence of a ooﬁma. | for implementing and integrating the modules to the a " G
version (aszopposed t67=stib) of the second. i toams.

22 Software Architectures
Overview of Software Development and Architecture 23

.,.M% forces. seen in fig. 1.8. shaping the architecture was easier to relate to the

ARCHITECTURE BUSINESS CYCLE, ARCHITECTURE

PATTERNS, REFERENCE MODEL =~ = Minterview responses. .
. . - B The main idea of the cycle, that the architecture provides feedback in

.m::: affecting one or more of the original influences or forces, have remained
; e same through all evolutions of the architecture business cycle. The cycle
en used as a theoretical framework. but it is hard to find empirical studies

Q.25. Explain the architecture business cycle (ABC) with suitable diagrg)
Ans. The model of the architecture business cycle (ABC) is based on i [

e , | . i< oft
assumption that “software architecture is the result of technical, business s - avolving the actual stakeholders and not only as an observation of an
" - PR - e i %
social influences™. The resulting architecture “in tum affects the technica® ;i rchitecture business cycle from a distance. . .

business and social environments™. The key elements of the cycle are (i
forces influencing the architecture. the requirements that result from the ,]] Sy o
forces. the architect and his expernience. the architecture and the system (g ; Ans. Software process is the term given 8. Em. organization, ritualization,
svstems in a product line architecture). The architecture business cycle ajgd|and management of software development activities.

shows how these kev elements influence each other. seen in fig. 1.8. The various activities involved in creating software architecture are —

0.26. Discuss the software process and the architecture business cycle.

(i) Creating the Business Case for the System —
(a) It is an important step in creating and constraining any future

Architectural ~ -
Forces Feedback W_.mn:_nmﬁ:m:nm.
Skeholder Needs Architect's (b) How much should the product cost ?
Experience L.
Business Management (c) What is its targeted market ?
M v (d) What is its targeted time to market ? -
; Quality Atiribute " oy p ’
Legal/Comtractual Issues mé?naﬂ_m i E (e) Will it need to interface with other systems ?
Commercial'Competitive / i | == (f) Are there system limitations that it must work within ?
Pressures . Architecture £ g - E
Requirements g : (g) These are all the questions that must involve the system’s
i 2 | e R . » i i o 3
Technicz! Environment 2 |architects. .
Functionaul | . ek
Political fssues Requirements ; (h) They cannot be decided solely by an architect, but if an
lllnl\\l.llllll = = - - e - L H
 Lite ¢ Architect architect is not consulted in the creation of the business case, it may be
¢ Coycle Jawwes A | impossible to achieve the business goals.

(ii) Understanding the Requirements — &
, (a) There are a variety of techniques for eliciting requirements
from the stakeholders.

For example, object oriented analysis uses scenarios, or “use cases”
. embody requirements. Safety-critical systems use more rigorous approaches,

In a later report the originators clarified the purpose; “...the architectussg . = = " e m. PRIt §

’ w i . ol .._u B S frwars such as finite-state-machine models or formal specification languages.
business cycle was envisioned as a means 10 depict the influences on a 0 . d —
architect and to show how architectures can eventually influence the V&2 i ~ (b) Another technique that helps us understand requ

. i 5 i € Cres 3 . .
things that originally shaped them”. “Ieation of prototypes.
The influences of the original cycle have been updated by the ori _— (¢) Regardless of the technique used to elicit
. . i . b . § 1 sire alitiec 3 T ~
authors in and are subsequently called forces in. This study is based on t esired qualities of the system to be constructed determin

. ; ; et Slrucy
latest of these updated architecture business cycles, since the seven calegorts ure.

t
Fig. 1.8 The Architecture Business Cycle ?

cit the requirements,
e the shape of its

24 Software Architectures

nee

iti) Creating or Selecting the Architecture — In the lang ,
Mythical Man-Month, Fred Brooks argues forcefully and g]q hbmzn boy)
wo:om_::m_ integrity is the key to sound system design and Emm oms:w th |
integrity can only be had by a small number of minds comin t Ncepy, ~
design the system’s architecture. € together

Overview of Software Development and Architecture 25

Fig. 1.9 shows the feedback loops. Some of the feedback comes from
he architecture itself, and some comes from the system built from it

(iv) Documenting and Communicating the Architectyre _ Architect’s Influences

) 3 Architect(s)
. (a) For the architecture to be effective as the backbone of ¢l ms_a_SEEUIV Requirements
project’s design, it must be communicated clearly and c,:mBEm:o:m_w o __gm i Developing (Qualities)
the stakeholders. b Organization
(b) Developers must understand the work assignments it Tequip Rechleal Ensicotiet
of them, testers must understand the task structure it imposes on Ea. : Architect's Experience
118

management must understand the scheduling implications
forth.

it suggests, anq d

(v) Analyzing or Evaluating the Architecture —

(a) Choosing among multiple competing designs in a r
way is one of the architect’s greatest challenges.

ationd Fig. 1.9 The Architecture Business Cycle
nid .
1 The architecture affects the structure of the developing organization. An
(b) Evaluating an architecture for the qualities that it supportsf architecture prescribes a structure for a system it particularly prescribes the

essential to ensuring that the system constructed from that architecture satisfit nits of software that must be implemented and integrated to form the system.
its stakeholders needs. ‘| Teams are formed for individual software units; and the development, test,
: _,..E_ integration activities around the units. Likewise, schedules and budgets

| allocate resources in chunks corresponding to the units. Teams become
-=anfembedded in the organization’s structure. This is feedback from the architecture

(vi) Implementing the System based on the Architecture — [to the developing organization.

(a) This activity is concerned with keeping the developers faithfl
to the structures and interaction protocols constrained by the architecture.

(b) Having an explicit and well-communicated architecture
the first step toward ensuring architectural conformance. o

: (c) Use scenario-based techniques or architecture tradeo
analysis method (ATAM) or cost benefit analysis method (CBAM).

M

The architecture can affect the goals of the developing organization. A
uccessful system built from it can enable a company to establish a foothold
1 a particular market area. The architecture can provide opportunities for the
efficient production and deployment of the similar systems, and the organization

. pmay adjust its goals to take advantage of its newfound expertise to plumb the
(vii) Ensuring that the Implementation Conforms to Emka&%ﬁ. arket. This is feedback from the system to the developing organization and
(a) Finally, when an architecture is created and used, 1t goes E._ ne systems it builds.

a maintenance phase. ; .dua architecture can affect customer requirements mo.a the next m«mﬂmB_
(b) Constant vigilance is required to ensuré that the actli8dy giving the customer the opportunity to receive a system in a more reliable,

uring this phase- = {'mely and economical manner than if the subsequent system were to be built
om scratch.

architecture and its representation remain to each other d

0.27. Explain the working of architecture business cycle.

. . . ; ts,

Ans. Relationships among business goals, E.oazo:nncnwan_“”w cecdbad

s y w | _—

experience, architectures and fielded mmemEm form @ ow,-mmmnv.&n to han®’§ >WE systems will influence and actually change the mo?xma engineering

loops that a business can manage. A business Bm:mmmm t HEmm ofi mR&FW l ulture. j.c., the technical environment in which system builders operate and

growth, to expand its enterprise area, and to take advan p(cam,
Investments in architecture and system building.

archited | The process of system building will affect the architect’s experience with
gt Pubsequent systems by adding to the corporate experience base.

26 Software Architectures

0.28. What is architecture patterns ? Explain e e
N Ans. The compositions have been found useful over

different m_o:#::m_ and so they have been documented and dissem;
compositions of architectural elements, called architectural EEMEE
rns

packaged strategies for solving some of the problems fa

0.29. What do you mean by layers pattern ? Also describe their benefits
M:a_ issues.
| Ans. Refer to Q.28 (i).

Some examples of this pattern are, networking protocols, in the Java
irtual machine, the application in Java consists of instructions for the Java
rtual machine; the JVM uses services from the operating system underneath.

Benefits — This pattern has the following benefits —
(i) A lower layer can be used by different higher layers. The TCP

.u,.u\na from TCP/IP connections, for instance, can be reused without changes
Q various applications, such as telnet or FTP.

time, ang Over 5.
'

)] —u—.oi._,

cing a System,

s and thejr wo:sm, ¥

haracterizeq accopg|

mple, a commgy mogy

. An architectural pattern delineates the element typ
interaction used in solving the problem. Patterns can be ¢
to the type of architectural elements they use. For exa
type pattern is this —

(i) Layered Pattern — When the uses relation

is strictly unidirectional, a system of layers emerges. A layer is a coherens .

of related functionality. In a strictly layered structure, a layer can QDGME i (ii) Layers make standardisation easier, clearly defined and commonly

services of the layer immediately below it. Many variations of this Eﬁw__ ”mongam Iyals iof dbstctionimaieat gossibls to devlop ATAATIcE taxks
lessening the structural restriction, occur in practice. . “Jand interfaces. ‘ : :

(iii) Dependencies are kept local. When a layer shows the agreed

. -Lm%mwmmaoommn %mz
as abstractions (virtual machines) that hide implementation specificg _Um._ & .

""" Hinterface to the layer above, and expects the agreed interface of the layer

“ elow, changes can be made within the layer without affecting other layers.

from the layers above, engendering portability.

] his means a developer can test particular layers independently of other layers,”
and can develop them independently as well — this supports development by
teams.

|

among software o_oa.m._u

Common component-and-connector type patterns are these —

(if) Shared-data (or Repository) Pattern — This pattern compri
components and connectors that create, store, and access persistent.da
The repository usually takes the form of a (commercial) database. Th

. , Issues in the Layers Pattern — The most stable abstractions are in the
connectors are protocols for managing the data, such as SQL.

ower layer, a change in the behaviour of a layer has no effect on the layer

(ifi) Client-server Pattern — The components ate the clients and 1§ below it. The opposite is true as well, a change in the behaviour of a lower
layer has an effect on the layers above it, so this should be avoided.

servers, and the connectors are protocols and messages they share amois
each other to carry out the system’s work. ; -

Common allotation patterns include the following —

| of course, changes in or additions to a layer without an effect on behaviour

ill not affect the layers above it. Layer services can thereforé be implemented

(iv) Mul, Patt Multi-tier pattern, which describes w% ..H.Hs%ww“ﬁw_“MMWMMMMWWQMW”WMMﬁmm%_%m%“wmwvéwﬁo 2 i giey

iv) Multi-tier Pattern — Multi-) i £ R an ! ‘

- distribute and allocate the components of a system .E &mﬁuoﬁaﬁwwﬁa. .rmuwm_.m can be developed independently. However, defining an abstract
hardware and software, connected by some communication. me s:o%%m yervice interface is not an easy job. There may also be performance overhead
pattern specializes the generic deployment ﬁmogma-ﬂo-wmﬁmama ~ jfiue to repeated transformations of data. Furthermore, the lower layers may
structure.

perform unnecessary work that is not required by the higher layers.

atterns =i . ; .
(v) Competence Center and Platform — These uﬂmﬂuooa%ﬁ%.., m%:mm..w 0. What do you mean by client-server pattern ? Also describe their
- . re. 4l A
specialize a software system’s work assignment structu i expetip]

center, work is allocated to sites depending on the technical or do ite Wi Ans. In the client-server pattern as shown in fig. 1.10, a server component
located at a site. For example, user-interface aomwmu is ao:.m wwm Emwmms_ H.pmo,\._n_am services to multiple client components. A client noBvoon womcm.mﬁm
usability engineering experts are located. In Em,%ond, one site pr St . d”,\o_mam [rom the server component. Servers are permanently active, listening
developing reusable core assets of a software product I i s

develop applications that use the core assets.) i

1] B ._

[T e

28 Software Architectures

The requests are sent beyond process and machine boundaries. Thjg o Overview of Software Development and Architecturs g
that some inter-process communication mechanism is required — clicgl 3

servers may reside on different machines, and thus 3
in difTerent processes. In fact, you can see the client-

server pattern as a variant of the layered pattern, _ Client _ | —

crossing process or machine boundaries — clients form
Service

The Master-slave pattern is applied, for instance, in process control in
embedded systems, in large-scale parallel computations and in fault-toleramt

the higher level and the server forms the lower level.

Examples of the client-server pattern are remote i |TCrmp L splitWork
database access (client applications request services
from a database server), remote file systems (client 1
systems access files, provided by the server system, Server T ME,
applications access local and remote files in a =
. . - sSupSCrvice '
transparent manner) or web-based applications Fig. 1.10 Client-serve P e !
g subService H
(browsers request data from a web server). Pattern] :
Issues in the Client-server Pattern — Requests are typically handled i Combine Results
separate threads on the server.
Inter-process communication causes overhead. Requests and resull dag R
often have to be transformed or marshalled because they have a differes :
representation in client and server and because there is network traffic. § Fig. 1.12 Sequence Diagram for the Master-slave Pattern
istri systems wi any servers with the same function should & . v ;
Distributed systems with many servers with the same function should & cxamples — One application area for the master-slave pattern is fault

transparent for clients — there ,f._E.:E be no _Ema _m: r.__r.sz.ﬁ _:, ﬁ_.:.d.n._,.na B 5=l Fe R AR Ia IR A5 (6. lamedtssioralalivies, eoeivis
between servers. When you type in the URL for Google, for instance, u._ their results and applies a strategy to decide which result to return to the
should not have to know the exact machine that is accessed (localig s e porssile st adia nkoseiilie % sty T Boatbelane dhat
transparency), the platform of the machine (platform transparency), the ro
your request travels and so on. Intermediate layers may be inserted for specift
purposes — caching, security or load balancing, for instance.

Sometimes, callbacks are nceded for event notification. This can also B
seen as a {ransition to the Peer-to-Peer pattern.

0.31. What do you mean by master slave pattern ? Also describe the
ISSHeS.

Ans. The master-slave pattern as shown
in fig. 1.11 supports fault tolerance and
parallel computation, The master component

{ example of the divide-and-conguer principle. In this pattern, the aspect of
| coordination is separated from the actual work — concerns are separated. The
1 slaves are isolated — there is no shared state. They operate in parallel.

distributes the work among identical slave a | . .
_ Slave 1 _ _) Nl_ | The latency in the master-slave communication can be an issue, for

components and computes a final result from . Pk Sai 5
NSRS, TN] 2 /g orfi 10Stance in -ti stems — master and slaves live in different processes.
the results the slaves return. Fig. 1.12 shows Fig. 111 Master-slave Patt real-time syste

a sequence diagram of a master distributing
work between slaves.

Master

The pattern can only be applied to a problem that is decomposable.

-
,’..”/j
z;

1

R

i

4

e
Tooena
ST

e
_ﬁﬁ.
=EER
s

|

= 3
nha
5

30 Software Architectures = .

i

Ei:.aa.

i

m__.wmvm\«w?m: the relation among the reference modey
- i »
patterns and reference architecture.

Ans. An architectural pattern is a description of element apg =
together with a set of constraints on how they may be useq,

n_mmou
For example, client-server is a common architectural pattey, Clie
server are two element types, and their coordination is describe 18y

) din
the protocol that the server uses to communicate with each of tem,

ts clign
A reference model is a division of functionality together B s

. daty.
between the pieces. Aa

SOFTWARE ARCHITECTURE
'MODELS & STYLeS

A reference model is a standard decomposition of a _.Bo:& prob
parts that cooperatively solve the problem. s

lem

~ SOFTWARE ARCHITECTURE MODELS — STRUCTURAL
'MODELS, FRAMEWORK MODELS, DYNAMIC MODELS,
o PROCESS'MODELS 0 = -0

A reference architecture is a reference model mapped onto moms
elements (that cooperatively implement the functionality defined in the refogt
5 wiC])
model) and the data flows between them. Whereas a reference mode| &s_

the functionality, A reference architecture is the mapping of that functiopgl| @ 1- Prite short note on software architecture model.
onto a system decomposition. O R

. Ans. There are five different types of models used to represent the
The relationships of reference models, architecture patterns, refere architectural design. These are — structural models, which represent architecture
architectures and software architectures.is shown in fig. 1.13. ¢ a5 a well organized collection of program components; framework models,

“which enhance the design abstraction level by trying to identify repeated
' patterns found in similar applications; dyramic models, which address the
behavioural view of the program architecture, thus indicating how the structure
or system configuration may change externally; process models, which
emphasize on the business design or the design of technical process that the
; ystem must accommodate; and finally functional models, which can be used
to represent the functional hierarchy of a system. Various architectural
\description languages (ADLs) have been developed to represent these models.

®b~wn§m the concept of structural model.

 Ans. Astructural model is the architectural map for a large software system
or family of systems (domain). The structural model used in a domain

Reference
Model

Reference
Architecture

Software
Architecture

Architectural
Pattern

. Fig. .13 i
These reference models, mﬁa:_8nE._um_%m:oEwnﬁa#@%Qm:a@.ﬁ%ﬁ &
are not architectures; they are useful concepts that capture o_mEmuﬁ.m“.m%
architecture. Each is the outcome of early design decisions. The HMJWF%
among these design elements is shown in fig. 1.13. A software architect 3 s el
desi mnm a system Emm: provides concurrency, WMQHHNGE_‘% Bo&mm_&:&n usabllffirepresents the point o.ﬁ. oobfdnmﬂ.Em for ﬁ.wmmw._omﬂw. Gmﬁn%%ﬂ”ﬂ“ﬁﬁﬂﬁm@
security, and the like, and that reflects consideration of the tradeoffs am! - vn_”moﬂzmuoou qualityand mm._nacou.\. i d
Y > Phave different structural models. The idea of a structural model evolved out
these needs. ; ¢ of the Ada Simulator Validation Program (ASVP), which established the
Pefficacy of Ada for real-time training simulation. The most important om these
Pstandards is the idea of a structural model standard. A structural ::.uam 1S new
. M fo the software process and falls directly out of a systems engineering process
Bas it is applied to Ada software development. .
The structural model is the framework through which components,
attributes, and inter-relationships within the system are nxmamwmm..ﬂ:n
structural model enforces a consistency in thesoftware structure, thus aiding

B tpy el

UIAIS ® w0 sipy Smop jo Aem 181 2

SIE, *9)NI2X3 0} SIALNIAXI juawgos out .

swes oy oq {[1A ANEUONoUN I 38109 JO YFNOU) ‘Sxaynduyof ;
LUESRIL <o a[npOW ¥ WO} JUSIAIIP a1nb Y00| felf _a1d jo Apoq ®© 1By 210U 0} 1deoxa “royuny Aue ISULIO] 21} SUISSNOSIP 2q 100

2930 S[NPOW /210 PAJEO] I U0 0g puk (14 M ‘(syuauodwod 10] WLIOJ UOWIWIOD B) [SPOW [BIMIONIS B PUR (JUJU0D
! yons suonouny yapuadop IBMPIEY pub ‘aoEEoov spom Fuiraaurdua swayshs Jo Apoq B 10q S9pn[oul SIVA

A puelq uo Suruunl dANMII
s1oynduron Y puelq uo Suruun oA
‘amnsa1 pue puadsns J5el “dnirejur se

wasAs Sunerado [[V Impowt £19A2 10J 9ATINOAXA J[NPOW WO S dIAY], .
-IoMO] 31} 3SNED 0 ST JATNIIXNG 3[npow oy PH {09 dIE UIBLIOP SIY} UIGHM SIIIASP ST, "S9INPad0Id noIssr Funoaxa
© 1oAO “5°0) ;$9%X0q JURIRJIP Ul 210M Koy} yFnoyy PUP ‘sarnpaooid Aousfiowa/piepuels Suipuodsaiiod a7} Funnodxa pue

-3)ND9Xa 0} STUAI]D USISOP [2A9]
70 9sodind 2y, "(r0MIeT

se (s)NdD I o s 2]ROTUNUITOD 0} JAEY noK op,, 3uraq anr ay ‘sapnpo
K[persuss are sionduwod NdD-odn 1nduIod [ea1 ® UO UNI 0) SeY)1 Aep
91 JO PUS 33 Je *3q 03 [9pOW [eINONES IN0 I P oM JOENSQE IDASMOH "UO o
puE ‘S20BIRUI JIOMIST ‘skeidsIp “S201AP 95LI0)S SE [ons $30INOS3I PAJRIN0S

M walsAs [euonenduiod SL-IMPOW V — 244MIIXH anpopy (1)

MIIAIIAQ)

(SIHV @) swasds Sunupl i asnay L0f 2anjoayo4y wWpwoq 1°7 ‘S

e mmm————

owop |
{arempreq |
H H
- H
y
JRMLL J2[[ox3uo)) owrEly
ks Surmry nopnIaxy waysAsqug ‘spuemmo) SO
> 21eISPPOIA
"N\, U0 paseq Anuy
ere(masAsqns-INU] o\ syerrdorddy
‘SaZRSSAPAL "o
WOIJ/0} BIB(

=)
1 aSeyjoed ! 3AINIIXH
m awm-uny juamdag juswdag [=-
1 10 Wa)SAS m
m SmetadQ | ety
- == Jua.LInyy

SIS AAINIAXY S

SO awnsay /puadsng ampopy [~

yseL, ‘ydn.rrajuy

"Isyloue quo yiMm m.EuE:E
jopow [eImOnns SIYV dYl JO SudWI[d [eInjonis 90 oty UP

MO BJE(-
Mo [05U0)

i .&.—Oauvﬁ [enMIA 9} — SJULIIJ [BINIONI)S HO%&E QALY SUIEJUO) [opOtl [eIN}ONIS

1 sougs ‘snoniquie Ajajeraqijap oy S vda 24l ‘1T ‘81) Ul UMOYS s1 SV 10] [9pOUI [EIMIONIS I
sasnEd,, 9ALNDAXD d[NPow oy "

‘wesdord SYVIS 2y Jopun Funensuouwap Jo ssadoid o) Uy are
M [OTYA 25131 10§ sanijrqissod Jofeur sey yz1om Suuaswfus swaysks Junsrxe

‘SUTEWOP-qNs 10 SJUWSas Wewop a4} Jo 125qns awos jo dn

H suoryeorput [pULIOUqE /suorjoung[ewl SUIZIug0091 ‘saInpadoid [euIou Sunnoaxa
1 Kouarorjord ured ‘o[orges Ire uonjearjdde 1) Jo sonsuaorIEYd 1YSI]J 10/pUE
i soyeanSryuoo uone)s 107e19do oY) I IBT[TUIE] JUI003] O} SISN I9UTRL} € 18}
mom_.wu@ gururen op1aoid o) A1esseoou swa)shs o) sassedwoous urewop STYL
| -suraysAs Sururen o[oIGoA IIE SWIT}-[ea1 © 10F SWAISAS pue sjuauodwod 34 e 30
| nonernwe 10/puE ‘UONEINWNS ‘TOLB[AWIS 20} sopiaoxd 1eyy sa91A9p Sururen
a[OIY2A ITE JO AJTurey ST uletiop STAY 2YL Ulewop (SIAY) smsAs Fururen}
W aporgaa 1re oy 03 parjdde aAey oM SIMOAYIIE WI1SAS/2IN]OJIYDIE 2IBMIJOS
ay) ST (SIYVQ) WaIsAs Sururer) T 211 103 SIMOAYDIE WEWO(SUY

‘ 1apout [panionys (SLIV @

I
.. waisAs Suninay ul SN 10f 2ANJOINYIID WIDWOP Y] uipjdxyg ‘0
) |

m

*({21EOTUNUITIOD

Ja[onuod
wa)sAsqns

aapnaaxy | — ———

sagessaTAl
PP NIV

aWEL, JualIn)

£q sueaw 2y st (NA) JIOMISN [BNUIA S — Y40MIIN JPHIILA 0

‘sjuauodwod

4 sa3exoed op moOp) SONTUS USIMID] TOHEIIUNUITIOI IUL (§119)]

‘(;°8eyoed B U1

| : (;o8exoud
| ok op mopy) uSisep oy w sIXe [Tt soNNUS JO SPUry 24 (1)

| — sogoads [opow [eINIONNS YT, “(SIYOIMS PUE “SINDS [B)IUI ‘suononnsul
|| ©omdwoo se yons “spred saniud woxy 3onpoid o piing 01 weyd ay3) USISap oY)
_w Pue (uoneonyroads syt Aq pojussardal se) 2]0Um € SE waysAs oY) Teamiaq des
M Y SwiSpuq o) yorordde SuussuiSue ue apiaoid se1Sarens om asay [, ‘sped
|

S uoneddy

SIINAND

| 95013 usamiaq sooepdyur paunap Aprorjdxs 03 sped] ASare1)S TONEBUIPIOOD Y,
|| S1usuodwos 10 syred Surddejioao-uon @}21081p OJUL WAISAS SITUS 1) SuIpIAIp
10 speoj £8ajens Suuonnied sy ‘KSa1ens UONEUIPIO0d E (IT) PUE £Sorens
d Suuonnied ¢ (1) JO SISISUOD LIS} AU ISN 0} PUSIUL M S “JIMINITIIE UV

-pajuamojdut o1e
‘ MS4jeue [eInonLLSs oy} JO SI NS) LIIYM UL s130a71YdIe a1 Jo Wed juepodum
| '® S3w003q [apowr [eImonns Sy} ISEIUOD U JUSTIUYAI PUe UORIULIP
ot Yl Ueuodwos a1eM1jos Jo ss9001d B SI SISA[EUR [BITIDNLS ‘SIsA[eUe [eI]ONIS

wQ
1y

'S19[]00u00 Wayshsqns oY) ‘seAnnoaxa juawdes oyl (§)IANNIIAXI apnpou! *§ A pasnyuoo 5q 0} pool J0U S20p [P0 [RIMIOUNS Y, “SUPUEISISPUN

€€ S9lA1S § S1epoyy aunaa)yaly aiemM)os

i
m) saimasyyoly aiemyos g

o0 Y

iz

i

ward iy,

s v VT

.
i

i

i
i

RPN

i

FEre

=

il

P32
?:' m’

ey

=%
=1
|]
i
&
[

- thread i -
Kk in DARTS — a mode or state change message in DARTS is a messa§

34 Software Architectures

memwwﬂcﬂmmﬂww to om:‘.ﬁra momz,_a_: executives as subprograms, o it

el M.xmnz:o: as :aoﬁa:n,_mﬂ tasks. Because data flow vBmw

s i mm ve Mza mmemE executives .mm one-way and smal]| Q_.L_m?

B e p mmm. om the anc_m executive to its segment), it 3
in the way of _.::u_mam_._::m the right choice for a _uaom_.m:dg TR

Software Architecture Models & Styles 3
s 35

ndence between subsystems and interface message
provides the subsystem controller with data mﬁm s) the segment
gsages to send to the VNET. Om messages and

rrespo

QOC:<®

ds mé

The subsystem controller is at the middle of the D

: i ; ; < i

points are standardized. Every subsystem controller r%mmwﬁgag\. =

. This does not mean that all entry points will be used in m<@wzmmmﬁ_%o entry
system

(iii) Segment Executives — A i
. ! : — A segment 1s a major :
Mh_wowosm_:%. mﬂ_% in the Mod Sim program, it was annm_,u:_smmo:u__ﬂm
L M Ho_wm and objects “go together” in the sense that (a) there are Eﬂ S0
. s between them, and (b) there are order dependencies @ag_ﬁ&o:_
systems and noamo:m:ﬁm which go together in this sense are veen th
momEo.:w These functions and objects were gathered together i Stoupediy
and this represents = gether into 12 sepme i
DARTS a rob some of the pre-done systems engineering work th .
= a robust candidate for the development of reusable software at my
e segment executiv ib g
VNET hmﬁwn from the Mmoﬁm Mn. mﬂonmmc_o for all communications over e oo%ﬁosnam.wua G RnoRlEdegabaUETTE el S eH(G aitliion.
Apd ck tick message). By i : atrol commands, presence or absence of oth
e e . By isolating -) y . of other compon i
ﬂME:Eomﬂonm functions in the segment executives, the lowe _m ‘the VNl ironment) is contained within the components O%B e S
mm: system controller and component) may be Hm:muo dfr g evel elemege f the objects they simulate in a purely mcm&.w t woﬁw@:a aEpots i
: om simi i i
or other architectures. EEE moms anner. These rules, which are among the most m&mnmﬁ mmm%wmwoﬂ Ma:mm&_mq
. The segment executives are also responsible for mod Hod DARTS structural models, comprise “knowledge firew _M.m:o i
logic (total freeze, reposition, run mode, and so on) ode and state confl jyst as in the AVSM, all data flow b g. vl
N > . E] ow between compo
‘ooh_q,_ww maﬂugﬁ executives schedule the execution of their subs; ihrough the subprogram calls for each of the entries ENWM MﬂWMMMMm W Hm.wm
ers by using a schedulin : subsystdfhe SEI points out, this set sl 8. ad,
‘malfunction insertion and g table mechanism. Functions suchfthe knowledge fi : GLBIRIES 1o both necessary and sufficient to permit
milmidelkiieiiompametanilsdirihd s e edge firewalls described above to operate. - - :
(

int

ntroller.

(v) Components — As in the AVSM, the 1

S i - 3 0

entified in the architecture is called the component. mmoﬂwﬂﬁmg& s

rresponds to an object in the OOA sense. In DARTS, as in mewnﬁwgoim

owledge about the operation and state of ooEwoboE.m is contained E.w%:
within

0.4. .:\wﬁ are the advantages and disadvantages of DARTS ?

Ans. Some advantages omUbWﬁm are as mo:ozm_ - ‘

.&.QEE.N i %VM e_M‘ subsystem oocﬁ.o:mam.. and components are based on reusable

moEﬁosm? woowu\ ”Mdm%mﬁﬁ looks like every other subsystem and every

ionre s like every other component, in that they have the same
gram entries and the same package structure.

be widely reusable. Since
they should be reusable

like an i iti
2 N other, though it is processed by the segment executives. -
e segme ives i .
entries in MMWEMMMMMMMMW“ s o—m: upon the appropriate 2pa Y
FE em controller: : _
appropriate control messages through the ,\.mzm_mu ‘W ssedson. the recoly
Segment executi . T
it will identify itself to the ‘mgm_wm%. of a message in our interface specs, g ~(ii) Components are structured t
message, and so on. as a sender of that message, send lff°mponents have no knowledge of Emwﬁwﬂ&omamam
; e the widest possible context. .

(iv) Subsys ,
to the functions m_m\uowﬂmmwﬂgtmwm P Subsystems originally correspon - (iii) Delivery is more predictable
the request of the customer w gments in the Mod Sim architecture, whichff'®meable and locatable ve om% in the rogra
that time, we have done manmwwhwa_ronm_ functional decomposition. Sinff"d components can be qmmmma mnwa a <maw m%_w da

system in a more object-focused work on abstracting the objects in ffj “4ction to delays and data voids have lower impact.
a or object-abstracted methodology. (iv) DARTS is designed to permit segments to be easily st
model (AVSM). In the AVSM data flows out oS_um.imm with expertise in visual systems, electronic warfare,
ut of subsystems through a sha@PUt Which have little or no training system experience can compete to bu

memory based ex
port area, while in DA ;
’ RTS ndivj
agely basa s o}] m_w. 'dual or set of appropriate segments. The ability of segments 10 bete
and-alone entities lowers both prime and subcontractor risk at accenfance.

=

=

since the compc1€nts are all
m. Each of the subsystems
te in the program, s0 that

beontracted.
or weapons
ild an
sted

wpaSoiqg 2ouanbas ¢°C 1] piote Iy JUSLIND 3t HIOMIWEL IdYI0uE UO ping O, "U0 Sp[Ing JI0mawely

0 oy} SYIOMIWILY JO SISSEID Ay SAYIIS 195 SsE[d WO-SpIINgG oy

| ‘[opout afor uoneigojul
L poreo s ‘ad£y sfor woneidaur ue sapiaoid UoIym ‘[opow ajor v rads)

. a%uﬁwﬁﬁ ue paj[ea si jas ad4y sjo1 uoneIsoIUl Uk JO JUSTUR[? W *QUuTIting
JIOMOUIEL] ST woy $109(qo Jo asn ayew ues ssourysur siay) 181 Os m&mm_o
o £q pauljap 99 ISNL Y2IYM pue ‘sasse[o 03 pauSisse usaq jou dARY oM
. jpou SS¢[0 211 30 sadA} 2701 2501} SUIRIUOD J] “SIUI[D Paseq drysuonefar-asn 4q
Hon 0q 03 ST JIOMIWEL Y} MOY SOUTWLIRIP 195 adA} ofoI uoneIgaul oY,
| ‘Sursse[oqns ygnoay) uorsusyxa £q pue sdiysuonyejar
lsn £q q10Q ‘9SN2I JO JIUN JUAIDYOD E SI I JOAIay) Joadse jueorjrusis
0 mrewop Ie[nonted U0 SI9A0D YIOMSLWERYJ 1S SSE|d UO-SPINg © pue
s odf o[01 uonEISSIUI U YYM JOHOT0) [OpOW SSEYD € S Jlomawel] v
. . "uonedrdde jo Lypenb 1oy3ny pue ‘sowr) juswdoasap
| hiogs ‘K11aronpoid peseasour astwiord Koy juswdojaasp aremiyos
o110 199(q0 9Bos a8Ie] JO 1dI0U0D [BOUAD B 2IE SYIOMAWEL] ‘SHp

BT

e pmmmmammm— - e =]

funsayl

[srim12 Q13801

m__n_unm._um:,u_uu._u

135(191EPI[EA

t
1
¥
[
1
N
1
'
1
i
[

s13sq) sodeuey AN1n20g u3313§ WMoy IWwoisn)

O O Ol ¥

. w021 Anus oy
Suisn uMOYS SI SI3sN PA[[aqe] 199[qo Ay, ‘WO JO[[0NU0D) FUISD UMOS SI
J98euew A3uNoas paf[aqe] 193[qo Y, "H0d] 90€JIS}UT JOSN I} FUISN UMOYS SI
uoards widoy pajeqe| 102[qo oy], "mojeq ajdwexa oy ur se ‘suodl padAioeas
[eroads Suisn pajussaidal are s192/qo oy Uy "OUOP Y104 943 123 0] A[jeuIou!
suaddey 1eym pue Wa)sAS U} YIIM J0BIANUI [[IM IISN B MOU-OLIBUIDS 9SBI 95N 3]}
oJRISI[[0} [3POUI AU} U1 $95E 25N Japun paoejd aue swederp asay) Apudnbai]
-aumm) 1940 §19a(qo usamyaq Sussed sSessow jo dew [enuonbes e sapiaoid I
wa1sAs A1) UIIIM SIS PUE $192fq0 ‘SUSAIOS ‘SIOSN UIMIQ UONIRIBNUT 3Y)
Keydsip o) pasn a1 sweiderp sousnbag — suw.Sviq 2ouanbag (1)

‘J2pott SYIoMIuDLf HO 310U 1IOYS LY “C°O

‘SIV JO $31JaUaq [[nF oY) SZI[BaI JOU ABW SUIEWOP JUAIJIP
H3unjIom suoneziuesio ‘Yons sy -o1jroads-urewiop st SV (1)
. ‘Se[} pal e se sI) 235 v
iund 0-Q “syusuodwod jo uonisodwodap [euonaUNy 10 J02[qo syuad pue
HR)sAsqns o) syuawalinbal jeuonouny swa)sAs sayeoore STV (1)
. ‘uonoauuod pue dmyas a3essatu
I 104 Suipod snoipe) oy JO [onwW dNEWONE SIYV(P4 PoIeioosse
un pue ‘ssaooid jonuod siy ur djay jo [eap je21s e sepraocid uoneoyioads
I ajqeydepe “orrauss oy * MO[J BIEp [01U0D 0) 105 94 NOK ‘MO BIEp
1103 03 Juem noA J,, ‘usaq sey ueSo[s nQ) ‘sMoy SuLeauISu SOYE) YIAIM
11900 Moy ejep samnbar A[In[osqe ‘IWSAY 2 a1 ‘SIva ()
— SMO[[0J SB 218 STV JO SeFeueApesiJ

& ‘ss2001d SI) 9jeWIOINE 0] ASBD ST)1 By} pajensuowap
” __M_QMB PUB ‘urewop oyj 10§ [apow uoisioap Yy £q paysijdwoooe st wessoid
| ,_.. $ B JO sjuowambai oy 07 so0BI01UI 9[qESNAI 93] Jo uoneydepy ‘epy
oo Ut payyroads A[1o11s 21 sjuswIZos udam1aq $0eJIu] (14)

SNdD [nyramod s10w 10 nyramod ssaf yiim sndD Jo yuswade(dar-3nd

i

| |

| Wm W siumiad jey sjuowSas pajodgJe AL 10J UISOYD 3q UED AIMIIIYIIE
i Pre

Furpepow ssa001d ssaursnq SUIPN[OUI SUOISUAIXS puER SWeISeIp souanbas
‘swrelderp aye)s ‘swesderp Ajanoe 103 poddns sepnyoul Jf "oWIL JOAO wa)sAs o1 Jo
InotAeyaq aty) [9pow puae ssaidxa 0) pasn ST [9POW OUBUAP S L, ‘gjoalqo sanjer
§JuasaIdol saje)s pue A)IALOR [BUONOUN] [BUIXD Sjuasaidol SJUSAH "SANEIS pue
SJuaAS 1M SatR[RT weiSelp ojeig “uoneordde ue o) juepodu st e JOATIRA
[e30duwa) p1m sse[d goes 10§ auo ‘sweiderp ejes odN]n JO ISISUOD [SpOTl AEIS
“Suijapow aye)s se umouy osye st Jf ‘swesSerp ajess Jo djoy oy GIA Apeonydess
pajuasaidal st japowr onueuA(y “waysks sy jo joadse onuod) yuowo[du!
PUE A3103ds 0} pasn s1 1] “suonesado ot Jo Furouenbes pue UM A PIUIU
218 Jey) wasks Ay Jo joadse asoy saquosap Surjjepow drweukd SUY

¢ 12powut d1uwudp Ag puvisisapun nod op JyM °9 0

I0OMSLWEI] JUALIND JY) AQ POSN 218 JBY) PIA[OAUI dIE sadfy 2104 | oy U ® ‘pajedionue s1 a5ueyd SIY) USYA\ 'HIO}S OI9Z-1BIU UM urese
: * | B O i

uoneIda)u; yarya u ‘sjapow ajos woyy sadAy ao1 auyyop ey SHIoMIWEY SELIRN fog } S[npow suo oI} paAowW 3 ABW SHUIWIAG JUSWS2S B 0] P3jed0][B
J0 53s5€}0 350y sasudwion jas ssejo uo-spying s, "sASSE[D S 03 39S 2dAy 9[0T f_ uonendwos jo pue sjuowsas Jo UOHI[AP IO UOHIPPE 110)]8-0192
UonR@aqur s j1omawe) 1ayjo a1 wouy sadfy 5101 21} JO [[& 10 SWOS sudisse { - SlWiad g LAV “omod [euonenduiod ssaf JO 210w d1bar suo-mof|oy

i -mh 1 ¢ _Unu nw—(—n- m:\—OHﬁD.—u:UUH mc A v
LE mm_?cm % WﬁwhuOE EDNU@E_EULG\ mLm;.—tom

S8INJO8JIYIY SIBMYOS 9OF

38 Software Architectures

(ii) Activity Diagrams — An activity diagram is one
specifying dynamic behaviour of a model. It depicts activities which are
out by human or computer actors, and the transitions between mﬁ.nm. ..
including the conditions governing the moving to another activity, ,:E_E
may also include synchronization points at which two or more mnmizma
meet or diverge indicating the possibility of parallel processing, 3

amﬂm:uﬂ

Start
. Receive Order
Payment Authorised >
*1Check Line Item
In Stock
IFail
Cancel Order

Pre-condition
(Stock Assigned to
All Line, ltems and

Payment Anthorised)

Reorder

=

_ Dispntch 32_5.‘_ — z...:::.._rll_

Fig. 2.3 Activity Diagram

Activity diagrams are used to show how different workflows in the syslenf
are constructed, how they start and the possibly many decision paths that caafl
be taken from start to finish. They may also illustrate the where paralld
processing may occur in the execution ol some activities. ._

(iii) State Chares — State charts are used to detail the transitions ¢f
changes of state an object can go through in the system. They show how g
object moves from one state to another and the rules that govern that chang
State charts typically have a start and end condition. . :

.II'— Processing Request _
Start

Add to Cart

End
Fig. 2.4 State Diagram

(iv) Process Model — A process model is a UML extension o:_ﬂ .

activity diagram used to model a business process this diagram shows wha

goal the process has, the inputs, outputs, events and information that are

imvolved in the process.

Software Architecture Madsis 4

_ Information _ _wmmaznnm —’n:»_ _

Supply Input Goal
w Business Process S E

Styles 39

A Business Process —

1. Has a goal

2, Has specilic inputs

3. Has specific outputs

4. Uses resources i

5. Has a number of activities that are performed in an
ordercd fashion.

6. May affect more than one organizational unit.
Horizontal erganizational lmpact

7. Creates value of some Kind to the customer.
The customer may be an internal or external entity.

Fig. 2.5 Process Model

Q.7. Explain process model.

Ans. A software engineer or a team of engineers must incorporate a
development strategy that include the process, methods, and tools layers and the
generic phases to solve actual problems in an industry setting. This strategy is
often called as a process model or a saftware engineering paradigm.

That is, a software process model is an abstraction of a software process.
A process model relies on the nature of the project and application, the methods
and tools to be used, and the controls and deliverables that are required.

Therefore, it is essential to define process model for each software project.
IEEE defines a process model as “a framework containing the processes,
activities, and tasks involved in the development, operation and maintenance
of a software product, spanning the life of the system from the definition of its
requirements to the termination of its use”.

The various process models are —

(i) Linear sequential model or waterfall model
(ii) Prototyping model

(iii)) RAD model

(iv) Evolutionary process model

(v) Incremental model

(vi) Spiral model

(vii) Component-assembly model.

= in was developed to rid the problem of

lm.m. Describe the 4+1 view model.
Ans. The 4+1 view model presented

Physical View

; R . Scenarios
software architecture representation. Five

concurrent views are used, each view
address a specific set of concerns of
interest to the different stake-holders as
shown in fig. 2.6.

Development View

Fig. 2.6 Each View Addreg,
Specific Concerns

Software architecture = {Elements, Form, Rationale}

| in a so called blueprint. The design method is scenario-driven.

(i) Physical View — The elements of the physical view m_S easihl
identified in the logical, process and development views and are concemef
with the mapping of these elements onto hardware, e.g. networks, processe
tasks and objects. In this view, quality requirements like availability, reliabiliy |

(fault-tolerance), performance (throughput) and scalability can be addressed M

|

=

(ii) Process View — This view specifies the concurrency model use(
in the architecture. In this view, for example
concurrency, distribution system integrity and fault-tolerance can be analyzed|
The process view is described at several levels of abstractions, each addressing
an individual concern. . w
In this view, the concept of a process is defined as a group of tasks that _
form an executable unit. Two kinds of tasks exist; major and minor. Zm_.c;.
tasks are architectural elements, individually and uniquely addressable. Minot m
tasks, are locally introduced for implementation reasons, €.g. mEn-ocg_%
buffering, etc. Processes represent the tactical level of E.oEﬁnEHo.oon@J
Processes can be replicated to deal with performance and availabilitjfi
requirements, etc. 1
For the process view use an expanded version of the Booch process vieW
Several styles are useful in the process view, e.g. pipes & filters client/serverl
(iii) Development View — This view takes into account internal, 0%
e intrinsic properties/requirements like reusability, ease of developmen}
testability, and commonality. This view is the organization of the actual softwar i
: modules in the software development environment. It is made up of prograf |
libraries or subsystems. The subsystems are organized in a hierarchy cﬁmw.n_‘ % i
It is recommended to define 4-6 layers of subsystems in the ao<n_omna=#<_%_ t
A subsystem may only depend on subsystems in the same or lower layers,
Eh._uiﬁmma%m:ag&mm.

P Ty

expo

views hav
is applied independently. Each view is described using its own anammaﬂap | However,

require
contaln i
| expressed as objects

used in the logical view is the .
, performance, system availabilit | adornments are not very useful at this level of design.

40 Software Architectures 3

Software Architecture Models & Styles 41

This view supports allocation of requirements and work division among
cost evaluation, planning, progress monitoring, reasoning about reuse
?

| teams, .
— | portability and security.

| bsystoms graphs. Module and subsystems diagrams that show import and
1 su

The notation used is taken from the Booch method, i.e. modules/

ot relations represent the architecture.

The development view is completely describable only after all the other
e been completed, i.e. all the software elements have been identified.
rules for governing the development view can be stated early.

(iv) Logical View — This view denotes the partitions of the functional -
ments onto the logical entities in the architecture. The logical view
s a set of key abstractions, taken mainly from the problem %BRP.
and object classes.

If an object’s internal behaviour must be defined, use state-transition

diagrams or state charts.

The object-oriented style is recommended for the lo gical view. The uoﬁmo.u
Booch notation. However, the numerous

Production
Engineer

Sales
Representative

Employee

Accountant

Fig. 2.7 Booch Notation Example in Logical View .

'(v) Scenarios — The fifth view (the+1)isthe list of scenarios. momcwﬂo,m
serve as abstractions of the most important requirements on the system. Scenarios

| play two critical roles, i.e. design driver, and validation/illustration. Scenarios

are used to find key abstractions and conceptual entities for the different VIEWS,
or to validate the architecture against the predicted usage. ‘

important
The scenario view should be made up of 2 mBm:. .mc_uma oMa_M%w.
scenarios. The scenarios should be selected based on criticality a

Each scenario has an associated script, 1. ECHTAIONE
between objects and between processes. Scripts ar
the other views and failure to define 2 script fo
msufficient architecture. .

Scenarios are described using a notation similar 0
the modification of using connectors from the process Vi€
and dependencies between elements.

int
e. sequence of interac
e used for the validation of
closes an

the logical views with

w to show {nteractions

¢ a scenario dis

42 Software Architectures

Software Architecture Models & Styles 43
(ii) Adynamic process model that depicts how th

e

|
© system is organized _

ARCHIT

CTURES STYLES — DATA-FLOW >_ﬂn_._u._.mnﬁqm_ _::c processes at run-time. This may be different from the static mode]
PIPES AND FILTERS ARCHITECTURE, CALL bzo,ﬁm.ﬂ.. u_ (iii) Aninterface model that establishes the services Eoia&.@ each
ARCHITECTURE, DATA-CENTERED ARCHIT B wm:_umwma_j through their public interface, e

ECTUR
ER (iv) Relationship models that depict relationshj

LAYERED ARCHITECTURE
. M_um_smn: the subsystems.

ps like data flow

Q.9. Discuss the architecture design process. (R.G Py, Ju 0.10. What do you mean by an architectural style ?

Ans. Architectural styles define a family of systems in terms of a pattern
of structural organization. They also characterize a family of systems that are
| related by sharing structural and semantic properties. In essence, the purpose
| of using architectural styles is to develop a structure for all the components
e leveiasaig Emmauﬁ,o ?mmmz.ﬁ.mb a WBHE. m.ﬂms zwi_maum wan::mo@.n mﬂm wo be Hnaumg.nmﬂ&.u then
a focus for digegect § imposition of an architectura ma\.m results in fun meE&.oumsmmm in the

: . Ussion by S structure. of the system, Also, this change includes reassignment of the

. . | : " I functionality performed by the components.
(%) System Analysis — To make the system architecture explicit at -

Initial stage of system development implies that some analysis may be performe]

‘ i) Large-scale Reuse — The transfer of the architecture can be dg
across system having same requirements and hence can assist large-

he
Ans. The architectural design process is considered ag n_mé_oE:w Mes
ngq

structural framework for a system. It includes determining the maig
components and their communications. The following are the by MQH SYsi
of explicitly designing and documenting a software architecture _ Vantay

(1) Stakeholder Communication— A hi

of system is the architecture. It may be used as
variety of different stakeholders.

© “Q.11. How do you assess an architectural style that has been derived ?
: (R.GP.V,, June 2017)
Ans. The assessment of an architectural style that has been derived in the

| following ways —

. Data — How data communication between components take place ? Is
| data flow continuous or discrete ? What is data trarisfer mode (i.e. either one-
to-one or'globally available) ? What is the role of data components, if exist ?
How data and function components interact with each other ? Does the data
component interact to other components actively or passively ?.

Control — Within architecture, how control management take place ?
Within control hierarchy (if exist), what is the role of components ? Within the
| System, how the control transfer take place between components ? How control
.w sharing is done among components ? What is the topology that control %muom ‘
| 7 1S there a synchronization of control ? Within a system, how interaction of
control and data takes place ?

These questions gives the early assessment of architectural style.

Q.12. What do you mean by data-flow architecture ? .

Ans. This architecture is used in case of the qmzmmonamn.om of input %ME
55 output data through a series of computational or manipulative componeats:
Fig. 2.8 shows these architectures. |

In fig. 2.8 (a), a pipe and filter pattern has a set of componen
These filters are connected by pipes that transmut data __on.u one
the next. Each filter is designed to accept data input of a certain form

o (i) System Structuring — The system is structured into seven
principal sub-systems, which are independent software units. Communicatiosy
between sub-systems are Tecognized. . g

Q& ﬁ.a_.ﬁwi aq&mmahl>mgo§_oouq&H&maocmiﬁma_:o%___.m
developed between the parts of the system. ‘_.

i) Modular Decomposition — Each identified sub-system ,ﬂ |
decomposed into modules. The architect must decide on the module types %8
the types of their interconnections. |
These activities are usually interleaved instead of conductingin mmn%u_%
The result of the architectural design process is an architectural %M%_
document. It consists of several graphical representations of the system :53 Al
along with related descriptive text. It should describe how #.wo &aﬂa&. ,
structured into subsystems and how each subsystem s structured into Bo&__é ,
- The different graphical models of the system present differentp @a% il
on the architecture. The following architectural models may be %ﬁhﬂ: off
(i) A static structural model that depicts the subig
oo_svosm:a}mﬁmaﬁocm %é_ovmammmovmamﬁ:::m.

ts called filter. -
component to
and produces

44 Software Architectures

data output of a specified form, which goes to the next filter as itg .,
neighbouring filters require to know the working of each other, "Mput, No

Pipes

Filter Filter]
g
¥

(a) Pipes and Filters
——t Filter Filter Filter

(b) Batch Sequential
Fig. 2.8 Data-flow Architectures

Fig. 2.8 (b) illustrates a batch sequential architecture, where the daz
degenerates into a single line of transforms. This pattern takes a batch om_
and then a series of sequential components i.e., filters are applied to ﬂ.m:mmgh.

0.13. Explain in detail about the pipes and filters with example,

Ans. In a pipe and filter style each component has a set of inputs and s
of outputs. A component reads stream of data on its inputs and produces streat
of data on its outputs, delivering a complete instance of result in standat |
order. This is accomplished by applying a local transformation to the im |
streams and computing incrementally so output begins before inpul!
consumed. Hence components are termed “filters”. The connectors of &
..mﬁo serve as conduits for the streams, transmitting outputs of one filter
inputs of another. Pipes and filter style is shown in fig. 2.9.

Pi
e Filter Iﬁ__nnw

Pipe = Pipe
IV*. mﬁﬂl"— Filter f Filter

Filter

Filter

Filter

(a) Pipes and Filters

(b) Batch Sequential
Fig. 2.9 Pipes and Filters

h w
o
R

Software Architecture Models & Styles 45

pipes and filters style include the following — |
(i) The filter trans forms or filters the data it receives via the pipes
hich it is connected. A filter can have any number of input pipes Ma

number of output pipes.

(ii) The pipe is the connector that passes data from one filter to the

..,W._. tisa directional stream of data, which is usually implemented by a data

gjfer (0

store all data, until the next filter has time to process it.

(iii) The pump or producer is the data source. It can be a static text
or a keyboard input device, continuously creating new data.
(iv) The sink or consumer is the data target. It can be another file, a

Compilers — The consecutive filters perform lexical analysis, parsing,

emantic analysis, and code generation.

—_ —

Language 1
Source Code

Language 2
Source Code

— —

—

ﬁ h

Compiler Front-end for Compiler Front-end for
Language 1 Language 2

Lexical .P.ESWE. (Scanner) Lexical Analyzer (Scanner)
4
Syntax/Semantic Syntax/Semantic
Analyzer (Parser) Analyzer (Parser)
$ 4
Intermediate Code Intermediate Code
Generator Generator

Non-optimized Non-optimized

Intermediate Code Intermediate Code
_ Intermediate Code Optimizer |_
Opiimized Intermediate Code

pd ™~

Target-1 Target-2
Code Generator Code Generator

Target-2
Machine Code

Target-1
Machine Code

46 Software Architectures

Compilers translate source programs in high-leye|

. G —m kn 3] -
machine code of the underlying hardware, A compiler copg "Buage. Software Architecture Models & Styles 47

0

parts — the frontend, the intermediate code optimizer, ang E_M_M Of g . tages of pipes and filters are as follows — il

The front end checks whether the program is correctly é_.:maxwee Emugwm,”raw lead to a batch organization of processing,.
the programming language syntax and semantics, Here le Cil i 3 Filters are independent even though they process data incrementaly,
programs are recognized. Errors are reported, if any, Bal gy (i) .

.5 2 Usefy|. (iii) Not good at rmna::.m interactive mnv:omzoﬁ._m.
100N, The m.o:,w . (iv) When incremental display updates are required.
Ice code for Prog | (v) They may be hampered by rmipm.ﬂo maintain correspondences

. . - (e oy ; two separate but related streams. e
The intermediate code optimizer is where optimization ﬂmmm e een 3 Lowest common denominator on data transmission.
m..mzmwondmnoum for o@s.::wm: on are removal of useless or :E.m%mwa 4 v lead to both loss of performance and to increased complexity in
discovery and propagation of constant values, relocation of ooEusm_w_.w fa— m.m_ﬁoa :
less frequently executed place (e.g., out of a loo (fgEting (e . s

. o P); OF Specializ b ; : ification of architectural styles with
computation based on the context. The middle-end mozoam.aw 1l iz, B Q.15. Discuss the different classifi f ty

. , ; in detail. GPV,, June 2012)
the following backend. Most optimization efforts. are focuseqd omMMMH Ipect to software and discuss each style in d m:: Q.
on; ‘ it : e
The back end is responsible for translating the IR from the _..Em | Ans. The various architectural styles are as follow |
into assembly code. The target instruction(s) aré chosen for each IR} () Call and Return — This architectural M&;ﬂ helps a software
_ . mmnw :o mﬂ mﬁaomnmachngm that is easier to modify and scale. The

Register allocation assigns processor registers for the program v: ﬁw@ , :

possible. The backend utilizes the hardware by figuring out how S.w.nma lowing are the substyles of this category —) ;

execution units busy, filling delay slots, and so on. Although most m_mom (a) Main wncmwaimncvnomqwagrnngmr#.%ooamommm

for optimization are in NP, heuristic techniques are well-developed. ction into a control hierarchy where a main program calls 4.&,%% @Smmww
Some problems encountered in pipe and filter architecture incli mponents, which in turn may eall S oihies: EompATANln R RRE B,

a filter needs to wait until it has received all data (e.g. a sort filter), s @chitecture is shown in o e

buffer may overflow, or it may deadlock. Also, if the ‘pipes only allow il

single data type (a character or byte) the filters will need to do moma

This complicates things and slows them down=If you create differentp

different data types, you cannot link any pipe to any filter. &

checking is also performed by collecting type informat
generates an intermediate representation or IR of the sou
by the middle-end.

This ¢

=

0.14. What are the advantages and disadvantages of pipes.an

i

architectures.
Ans. Advantages of pipes and filters are as follows — .
(i) They allow the designer to understand the overall E_Eq_m,_,
behaviour of a system as a simple composition of the behaviour of the B&M.,
filters. &
(ii) They support reuse — Any two filters can be hooked 10g¢
they agree on data.
(iii) Systems are easy to maintain and enhance —
added to exciting systems. ;
(iv) They permit certain kinds of specialized analysis n.m..
throughput.

(v) They support concurrent execution.

i
i

New filtsfit Fig. 2.11 Structure Terminology for a Call and
| Return Architectural Style

dest™® (b) Remote Procedure Call Architectu <
- B a main program or subprogram architecture are distribute

re— In this, components
d over a network

48 Software Architectures :

QQ ‘Data-centered — In this architectural style, a daty M
. the center and is accessed frequently by other components which M%Ma By | |
" 3 .

~ update, Or modify data within the —
i i’ 1 ient

store. Fig. 2.12 shows a typical s

data-centered style.

e 19 W
Observe the fig- 212, where [To=m

i

Software Architectyre Models & Styles 49

0.17. Explain in detail about the layered architectire..
Ans. Fig. 2.13 shows the basic structure of a layered architecture

Q:E.c,:anﬁ

il

gl

gl

-

User Interface Layer

ey

mn

H

fif

client software accesses & central |Software| ™ ‘Application Layer
. St o re). e
- § fEpusitory (e, data store). d Client | o Utility
=5 data_store-can-be-passive IN-SOME |Software|
m.“ casesiss., client software accesses y
L the data independent of any nrm:m@ momai Client
= or the actions of other client oftware| | Software
S5 .
E5 software. Fig. 2.12 Data-centered Architee
. o 2 - U
~7¢ Data-centered architectures enhance ability=ire-current £
components can be changed and new client components can be m&ma.)
oy archiesmre, recardizssofother-clients. Alsol-tieblackboard mechanismee
2 to pass data wﬁomm clients. The processes are executed independently by i
2 components. |) Fig. 2.13 Layered Architecture

h_w._»,.rlEm architecture consists of a number of different layers. Each layer
performs operations that progressively become closer to the machine instruction
set. At the outermost layer, called user interface layer, compo-nents service
user interface operations. At the innermost layer, known as core layer,
components perform operating system interfacing. The two intermediate layers
ie., application layer and utility layer, offer application software functions

?m_m ‘UQBA\NQE — Refer to Q.12. i
(iv) Object-oriented — The system components encapsulate datay w_
the required operations for data manipulation. Communication and coordinaj
is established via message passing between components. i

_(v) Layered—Refer to Q.17.

A\

sty

i3

m\.m QM.E\\EN are the advantages and disadvantages of data centel and utility services, respectively.
architecture. | Layered architecture is an architectural style that organizes the software

hierarchically, each layer in the hierarchy providing service to the layer above
it and serving as a client to the layer below it. A layer can be loosely defined as
a set of (sub) systems with the same degree of generality. .

The layers architectural pattern helps to structure applications that can be
decomposed into groups of subtasks in which each group of subtask is at a
particular level of abstraction.

The layered architectural style has been des
of reuse where each layer aggregates the responst
the layer %maozu\ beneath it.

Ans. The advantages of data centered architecture are as follows —
(i) It centralizes the data logic or Web service access logic.
(ii) It provides a substitution point for the unit tests.

(iif) It provides a flexible architecture that can be adapted s the (S
design of the application evolves. |
Disadvantages of data centered architecture —

(i) The associated systems must agree on t
inevitably compromising on the specific needs of each,

cribed as an inverted pyramid

he repository aa___ﬁ .
bilities and abstractions of

adversely afft®§

mw performance. oo il i
B - . e
= (ii) Evolution may be difficult when large <o_cﬂﬁﬁo?ﬂ%s& i - The common principles for designs that use the layered archit

generated according to an agreed model, and translating this t0 2 nclude — . .
: . 3 - .) : functionality, while
= o very expensive, difficult or impossible. irol and 1620 . (i) Abstraction — This style nqo,;%m%ﬂ%w Jayers and their
= (ili) Activities such as backup, security, access .no:.ﬁ E_&ac%h abstracting the roles and responsibilities of indi
= may be different for different associated systems, resulting 12 ; terrelation,

unnecessary overheads.

- hardware and the software layers.

50 mogm_,m. Lﬁo.:;nn?ﬁmm

(i) Encapsulation — The layer boundaries are not eXpos

. ; ed
features such as data types, methods, implementation details, mormmm to the
- Tequired encapsulation. g the
(iii) Specify the Services — Each layer has to specify 5 di
18t

functionality. The behaviour and flow of data within the layer b

. . Oundar;
also to be specified in clear terms. les

(iv) Reusable — There exists no dependencies between the 1
and the upper ones; we can reuse them in other scenarios,

(v) Coupling between Layers — Provide coupling, abstra
layers to establish communication among them. A :

Fig. 2.14 shows the layered architecture of the android o
It is a software stack of different layers where each layer is a
different components.

——

Applications
* Native Android Apps 1_ _! Third Party >E..UJ_

Application Framework

‘Window
Manager

.Pnn?mw%
Manager

Notification
Manager

View
System

Package Resources -
Manager ~{-——Manager

Content
Providers

Libraries

Android Runtime |

SQLite WebKit OpenGLES

Core
‘Libraries

Surface
Manager

Media

F r
resType Framework

Dalvik Virtual
Machine

SSL SGL libe

Linux Kernel

WiFi Audio
Drive Drivers

Binder (IPC)

Displa
i Drivers

Driver

Memory

Fig. 2.14 Android Layered Architecture . :

oi
. The basic layer is the Linux kernel on which the whole ﬁ.:q mﬂ&
built on (version Linux 2.6 kernel). This acts as an abstraction

Process
Management

Power
Management

Ower _@sm

ctly, betwegy

Perating syster,
EI0up of seyery

— - '

i el e L o et

Software Architecture Modeis & Styles 51

R g s b2 e :E.mmow which enables the device to handle
different tYPES of data. These are written in C or C++ and are specific for
tmﬂ:o:_mq hardware. . .

Android runtime layer consists of the dalvik virtual machine and the core
java libraries. o |

The dalvik virtual machine is a type of Java virtual machine used in android
i el e Sl w timized for low processing power and
e e The DML m:.o...am multip ._m instances of virtual machine to be
croatod simultaneously providing, security and memory management, isolation
and threading support.

Application framework is the layer above the android runtime and this

the block where the applications directly interacts with and this block includes

activity manager, window manager notification manager, package manager,
resource manager and content providers. :

" The topmost layer of the android architecture is the application layer that
supports writing applications in two modes; native android apps and in the
third party apps thereby providing an endless opportunity to the developers.

A@ Q}E:ES&&&E&QW& E._N &unn.cnaﬁwaq\ Na%mﬁmm a...%mmnns.m.

k:w..,>a<mﬁmmwm of layered architecture are as follows —
(i) They support mmmwmu.m based on increasing levels abstraction.
(i) Allows :.Hv_mnumﬁm.nm to- partition a complex problem into a
sequence of incremental steps. e ;
(iii) They support enhancement.
(iv) They support reuse.
Disadvantages of layered architecture are as follows — 3 .
(i) Not easily all systems can be structures in a layered fashion.
(ii) Performance may require closer coupling between logically high-
level functions and their lower-level implementations.
(iii) Difficulty to mapping existing protocols into the ISO framework
as many of those protocols bridge several layers. ,
. (iv) Layer bridging — functions is one layer may talk to other
Immediate neighbour.

than its

Q.19. Explain in detail about the client server architecture. .
uting model thatacts asa distributed
between the providers of a
ters called clients. The

Ans. The client server model is a comp
Application which partitions tasks or workloads
fesource or service, called servers and service reques

m 1

52 Software Architectures

client/server characteristic describes the relationship of cooperatip
in an application. The server component provides a function or ge
or many clients, which initiate requests for such services.

There are two types of client server architectures —

£ Prog
TVice

(i) 2-tier Architectures — In this architecture, client %_.mmz% 41.
with the server. This type of architecture may have some Security 1
ﬁa_.moﬂumunm problems. H_:mEQ explorer E..n_ the web mﬂdmn S.o

doing required authentication it passes that request to the ser er,
mowm required E.oowmeq and sends response cmow to the m&a&@%

wamma architecture Emu vou can keep any Eaa_o ware |

Some disadvantages of client server architecture are —

Dependence — The client-server network model relies
and available centralized server. If the centralized server is 1
system or goes down due to problems, the entire network c:

cause network congestion on the network and slow down res
each computer available.

Maintenance — Client-server networks often Racw.o‘ i : c& mga and
a single network administrator to manage and maintain the equIf but the mﬁﬁ_oﬂ 1S ﬂx

0.20. Give example of client server architecture.

Ans. TCP-IP is perfect example of client server architect
client server is shown in fig. 2.15. 1

54 Software Architectures m
i oftware Archi
ections with the listen() system call, na;mﬂ:a _So.nm_m ——

(iii) Listen for conit
n with the accept() system call; Ty

rests, the assigning of the sub-problems is done in such away as
(V]

i i 110 : .
typically _MH_MWMO_MMM” Moﬁwwwmmwossmoa with the server. Send.and _.mo@ZM %m_ moa m“ﬂ_m_mmc& _USEQB in the most mc.?omnmﬁ and efficient manner,
using the read() and write() system calls. W) golve onts ar¢ mio:oBo.:m or semi-autonomous hardware or softwar
0.21. Explain wihy it may be mecessary to design the system archite,, _.Mwm that carry out tasks In nwo EEMfﬁﬂoEw:cosmE oﬁmn.mﬁm mmﬁnouEmEmo.
a&@m the specification s written. (R.GRV,, Dec, \Newﬁ ng>m consists of a group of agents that can take specific roles within an
Ans. The architecturé may have 10 be designed .@mwo_”m mvmnmmowzosm.; , Emm:__mmaos& structure.

written to provide a means of f.ﬁéoaasm the specification and aaﬁs_uw | n%wE_E% of Agents —The basic capabilities of agents are as follows—
ittt subsysons speifications coneurendh, o S epucued)) Reaelh That is, agents must reac timely and appropriaelyto
hardware by sub contractors and to p ystem costing, %E:bma il <hunecs in the enviseRmEt .

| u

Writing specification for the whole system might bring grea Comple (ii) Goal Oriented — Agents act in a purposeful manner.

e . L A ng cpmplexj

and it is difficult to formulate 1t. Therefore, it is easier to divide the systep; . b)

simpler subsystems and define their specification and it will save you the MM“MC | (i) hmiﬁazwwwﬂﬂmm Mbﬁwwwﬁm%““a be able to communicate with
ol tE | , other 5 ;

the environmen
(iv) Adaptive — They should be able to change their behaviour due

| to previous experience. |

(v) Autonomous — They must exercise control over their own actions.

of defining specification and put it into the respective subsystem. Hence
can concurrently develop subsystems and the specifications to ,cm.mg&i

o . n
the implementation stage-. i

0.22. Differentiate between data flow model and control flow model
(R.GPV., June 2008, 201

Ans. In a data-flow model, functional transformations Eoonﬁ.&mﬁ &E_M

and produce outputs. Data flows from one to another and is transformed asiff
moves through the sequence. Each processing step is implemented as;

. (), Temporally Continuous — Agents must posses the ability to

running continuously.

Q.24. What is the learning agent architecture ? Explain.

Ans. The idea behind learning is that perceptions should be used not only
to act but also to improve the agent ability to act in the future.

Basic software agents have no learning; they act according to the
perceptions defined in the agent design. Therefore, for new perceptions the
agent must be reprogrammed.

Learning agents can at runtime change their behaviour aecording’to
. changes in the environment. In this type of agents, nmno%mo:m should be used

|| ot only to act but also to improve the agent ability to act in the future.
__ A learning agent has four basic components (see fig. 2.16) performance,
eritic, learning and problem generator.
be mﬁro. performance component is what we have previously
asic agent — perceives and acts on the environment. .
.,EEMWo learning component is responsible for Bmﬁnw_ EM MNM_MM MMMM_MMM
gﬂaﬂBwBoEm. It uses feedback from the critic on how the ag
nes how the performance component should be

in
the future. The critic tells the learning compone 0t abou e
The critic 1S necessary becal

On the other hand, control-flow models are used as a basis for representins
the transformation of control. Control models:include centralised control an
event models. In centralised models, control decisions are made dependingafi
the system state, in event models external event control the system.~ =~ :

 AGENT BASED ARCHITECTURE, MICRO SERVICES
 TECTURE, REACTIVE ARCHITECTURE, REPRESENTI
e STATE TRANSFER ARCHITECTURE E

]

considered to

0.23. Write short note on agent based system.

Rmnmﬂw@wwﬁnﬁ systems mmwm&m:% the multi-agent systems are part of the W

eseachare of disrbuted artifcal neligenee (DAD AT can be subdiiée

edliiag uted problem solving (DPS) and multi-agent systems (MAS): Dg
mainly with information management issues such as task %83%&%

: agent .

and solut : ? i according to a fixed performance standard.

e mmaMH @M:ﬁm_m. While, MAS deals with breaking-down Em Eo_u”_ B the Percepts ﬁrmsmnz% %Mcm% no indication of the agent SuCcess. .

diliies o mﬁ e sub E.oEoBm to the problem solving agents with &n. The last component of the learning agent is the problem mnnm.asn s&mn
Pt the partientan subproblemn- AlionER each agen 1% :.m * Tesponsible for suggesting actions that will lead to DEW and informativ®

Software Architecture Models & Styles 57

: makes & quick left turn across Eham lanes of traffic, the critic
¢hocking language used by others .&Eamm. From €Xperience, the
ent is able to mo:bc_wﬁ a E_m. saying this was abad action, and

m < element is modified by installation of the new rule. The
?HEM_MM&OH might identify certain areas of behaviour in need of
“_mu d suggest experiments, such as trying out the brakes on different

s under different conditions.

riefly explain the single-agent systems.

Single-agent systems are based on the centralized process model,
| Ans. X N s. there is a single agent which makes all the decisions, leaving
| [these SYS ts to act as remote slaves. Therefore, single agent systems

Performance
Standard

Learning
Goals

Feedback

0.25. B

Problem
Generator

—

@

= r agents

2 . {all the oﬁm HEmEgH of entities such as transducers, actuators and/or robots.

5= \{ ; : ; b
m g2 | may ha - all entities send their perceptions to, and receive their actions from
< 9 ore ntral processor.
| » :

- VI | the same € :
2z & s 2 P | The environment of a single-agent system may have other mmnuﬁ.
Es $E B¢ s ,_ ver, these agents act as actuators Or Semnsors because they do not posses
22 =<« 3z = | However, ties : . : 1.
ms @ 4z ‘m | goals of their own. The single-agent system is shown in fig. 2.17

Environment : T

* Goals
s Actions
¢ Domain
Knowledge

Feedback Sentence

Action
Sentence

Agent

1 2. 76 TFic Seroccire of o Z—arr e

1on

pt
pretation
Solution
S_e'ntence
Action
Jnterpretation
e

Fig. 2.1 7 General Single-agent Framework

Perce
Inter

Sentence

0.26. Describe the multi-agent systems.
| Ans. A multi-agent system is a loosely coupled network omrﬁo_wwﬂm
| solving agents that work together to solve problems that none of t MB PR
solve alone. The main difference between multi-agent systems BM m“umma
| agent systems is that in multi-agent systems several agents ax_ww wwow &wﬁ,m
| aware of each other’s goals and actions. Besides being aware 0 1 2 aiso
intentions and behaviour, in a fully general multi-agent Systeitly m e
| communicate with one another, either to help an individual agent a
goal, or in a rare case, prevent it.

Multi-agent systems are composed of several
have the following general characteristics — ke v tho probler

(i) Bach agent has incomplete capabilities fo S0 ;

(ii) There is no global control.
(iii) Data is decentralized.
(iv) Computation is asynchronous.

Perception

“Performance

PEI‘CCption

Environment

it woulfl autonomons entities which
erald!

op

experiences. The point is that if the performance element had its Way,
keep doing the actions that are best, given what it knows. The problem mﬁ.aa
main goal is fo suggest these exploratory actions. This is what mo_oa_m”
when they carry out experiments. %m
 Anexample of the functioning of a learning agent architecture is mﬁoﬁn e
'axi. The performance element consists of whatever collection of wnowmo el
and procedures the axi has for selecting its driving actions. The crihie Y I

; _ examp
the worlg and passes information along to the learning element. For 4

il

=

(L

e

o

=
L5

FTT

SEEE

58 Software Architectures

Fig. 2.18 shows a multi-agent system with multiple agent
S

communication capabilities and others without communicatigp om, 55;“ Software Architecture Models & Styles 59
; Dabyjj. it . "
;] ; ch as CDs, book B
.:ﬂ || mmodity products st i ks, electronic components and other
Feom™ ts-all products. Amazon.com 1s a good example of a shopping bot

& .
Lone-SZCT 1 offer you a list of books that you might like to buy on th
N hat YO u’re buying now and what you have bought in the past)
Another example is used on eBay. At the bottom of the page there is a list
¢ similar products that other customers who did the same search looked at
h_. s is because it is assumed the user ﬁmam are relatively similar and they é.;._
» nterested in the same products. This technology is known as collaborative
filtering:

i

Environment BT Ll
Agent 1 E.

(i) User Agents (Personal Agents) — User agents, or personal agents
ligent agents that take action on your behalf. In this category belong
. ollicent agents that already perform, or will short
Q.27. What are the advantages of multi-agent system (MAS) 5 ! :mwﬂwwmﬁmwwm 2 g ortly perform, the
. : o ; ;
nm_“.a. QZ:E-mmo_: system (MAS) can be used for both distribyteg (a) Check your e-mail, sort it according to the user’s order of
Mm,“ ra _NM mv\mﬁ.ﬁm. For example, multiple agents can be used s Ma.._ preference, and alert you when important emails arrive,
ystems by providing means for parallel programming. P g (b) Play computer games as your opponent or patrol game areas

Fig. 2.18 Multi-Agent Framework i

3

Another benefit of multi-agent : : k.. :
agent can easily be added to zm o m_w.ﬂ@:g.m . their scalability. Thatis,apfl , :
o : gt e mu ti-agent system, because it is inher | (c) Assemble customized news reports for you. There are several
mo :_ mw .Omnnn_:z this is more easily done than adding new capabilities “, Jecsions of these, including newshub and CNN.
monolithic systems. S5t (d) Find information for j ice.
g [atior you on the subject of your choice.
Emﬁowmwow_wmmﬂﬂupaﬂmw_an:”_m,_.,_._d\ of MAS leads to simpler programui i _.@ M:__‘,oi wo:mz on the Web automatically for you, storing
- LUl o H R 3 o our [
e B ing with one centralized agent, programmers easily iden mformation forfuture reierence: .. - ;e
et ssign mo:qo_ o,m,ﬁ:@_m@ subtasks to different agent, This alsosul - . - 8 Scan inv.,__u"mwmom ._oo_c:m.mo_. and highlighting text that
EoE:_qu:m_._.:m:Ea.owo:w__omns.mzmmﬂ_mma:ﬁcmgogmoﬁma&.. _,SE:EREE_B@onmngmﬁoﬁgEmonsa_oa_%ﬂm.

: T ‘ “F Dis ics with you rangi
0.28. What is an inte ligerit software agent ? What are the 48 flsports. - (g) .mwcmm _,”oEOm E_:r, wﬂc_ ranging w.oﬁ your deepest fears to

intelligent software agents ? i
8 & o (R.GRV,, June 20 " (h) Facilitate with online job search duties by scanning known

Explai Or i K obboards and sending the resume to opportunities who meet the desired criteria.
ARIR Sofware agente” (R.GRYV.,, May NE : .. (i) Profile synchronization across heterogeneous social networks.

onitoring

“(iii) Monitoring and Surveillance (Predictive) Agents — M
usually

Mwws mczm._m:mgoo agents are used to observe and report on m%aanmr !

_og puter' systems. The agents may keep track of company inventory leve 5
€rve competitors’ prices and relay them back to the company, watch stock

| "nipulation by insider trading and rumors, €tc.

” 55%3 example, NASA’s Jet Propulsion Laboratory hasan mm.ma z“” i

as w w ry, planning, and scheduling equipment ordering to _&mﬁ.aﬂ s

lco ¢ll as food storage facilities. These agents :EE.Q ammw e
puter networks that can keep track of the configuration of each comp

c
Onnecteq to the network.

o MMM W_w%.o%ﬁca_. science, a software agent is a piece of software
e r %52 program in a relationship of agency. Such acfi0
The dea plies the authority to decide which (and if) action is approptt

ea is that agents are not strictly invoked for a task, but activate theself®

Emm m:
Wy wmmmwmEm:_aam:wom?woﬁmmmgnm_gomo?bno_:mna%

t monitors
i i s down,
servi®
mhﬁ_%m%m

P %t _w,.c”mﬂ Agents (Shopping Bots) — Buyer agents travel
These g e the internet) retrieving information about goods and
gents, also known as ‘shopping bots’, work Very efficl

—

A

60 .. Software Architectures

(iv) Data Mining Agents — This agent uses informagj
to find trends and patterns in an abundance of information from
sources. The user can sort through this information in order
information they are seeking. .

A data mining agent operates in a data warehouse discove
A data warehouse brings together information from lots of
Data mining is the process of looking through the datg
information that you can use to take action, such as ways
keep customers who are considering defecting.

o teopy
0

_.SEJ\Q.
1
1o fing S_M.g

m.m —.—W mﬁ : :
: T
a_m.maﬁz.“as ,
Warehoyg,
10 increqgy

0.29. What do you understand by microservices architectyy, » {
ey

Ans. A microservices architecture is a method of an<m5?b.m..m _,m.mm
as a network of independently deployable, modular services in which mmw ey
runs a unique process and communicates through a well-defined .h_.,_ S8
mechanism to serve a business goal. Think of it like a rouo<noE¢.um.
a honeycomb is independent from all the others and may be used for
purpose. Each single cell is not very useful, but when combined with e
a strong and flexible network is created that supports many uses,

The vision of a service oriented architecture (SOA) was first ske

in the 1980s as a way to unify monolithic islands of automation into 31
goal. It’s no coincidence that the concept of SOA arrived at the sam
the internet made large-scale peer-to-peer networking possible, ke
Applications based upon services need other services to manas

The concept of middleware is based upon this idea. Middleware co
groups of services to ensure that data flows smoothly between then
services are available when needed. The enterprise service bus (ESB)
way to coordinate services. This is an integration architecture E.m
common communications layer (the bus) to orchestrate a variety ofp
point connections between providers and consumers. For example,’
may call upon separate services for a shopping cart, a credit approvatp:
and a customer account to present a unified checkout window todf
shopper. In most cases, a common data storage layer is shared byall

The difference between a microservices approach and an ESE
microservices architectures have no single coordinating layer. ‘.m.. _
communicates independently with the others. This enables %m_‘_mn 0
assembled quickly and flexibly by teams working in separate ?mnm ‘
can each be written in different languages, which gives develop a__.m it
to match the language to the task. Each service can be %ﬁ_%_,_mﬂ
Programming language most appropriate to the task. The goal __M Bq. 5
development is to deconstruct the application into the smallest P22

~at10 |
. i 5 a Hc, 2 |
50 that serviceg can be shared and combined easily with other Eu.

Software Architecture Modeis & Styles g1
s

0.30. Whatare the m..m:wl.; characteristics of, microservices architectyre >
Ans. General characteristics of microservices architecture are a5 follow .
(i) Applications are n._m<m_o_umn_ as asuite of small services, each Eg.wJ
n independent process in its own logical machine (or Linux container) "
as (ii) Services are builtaround capabilities - single responsibility princi}
(iii) Each microservice has a separate codebase ang i5 ovned v_w\ om._
parate teaf- .
(iv) One can independently Hmﬁ_moo\:wmﬂmam\mom_m\amu_ow services,
v) Standard lightweight communication is used, often REST calls

over E..—..‘H‘.T. ﬁ . 1
(vi) Potentially heterogeneous environments are supported.

s€

Q.31. List out the merits and mms.ml.m of microservice architecture.

Ans. There are following merits and demerits of the microservice
architecture —

Merits — Merits of microservice architecture are as follows —

(i) Faster and simpler deployment and rollback with smaller services.
Taking advantage of the divide and conquer paradigm in software delivery
and maintenance.

(i) Ability to horizontally scale out individual services. Not sharing
the same deployment platform with other services allows each service to be
scaled out as needed.

(iii) Selecting the right tool, language and technology per service,
without having to conform to a homogeneous environment being dictated by
shared infrastructure.

(iv) Potential for fault isolation at microservice level by shielding
services from common infrastructure failure due to the fault of one service.
Where a system is designed to withstand the failure of some microservices,
the result is higher availability for the system.

(v) Goes hand in hand with continuous delivery and integration.

(vi) Promotes DevOps culture with higher service self-containment
and less common infrastructure maintenance. ,

(vii) More autonomous teams lead to faster/better development.

(viii) Facilitates A/B testing and canary deployment of services.

(ix) Traditional divide and conquer benefits.-

o ution. There is also a higher cost to having less

Crits may be enumerated as follows —

(1) Network reliability is always a concern.

higher service
frastructure.

62 m.on?mﬁm }He_ﬁmﬂtﬁmm "

. : istributed nat
A rt given the distri lure,
i _Egbm SURRS
(if) Less to0

ddressing cascading failures apq 5

.o monitoringand 30CTESS 7 Fcult
(iii) HBE:Q_MM_EQ integration testing can G.m a._m‘_o::.. Pley
(iv) QAper always more difficult for distributed muﬁaEm

ooing I8
v) chmwﬂ%om:%_%q _ higher fixed cost and overheaq,
(vi) High

(vii) Heterogenous environments are difficult and costly tg _,H.E
vil :

. come examples of
m.ﬁ.h:”“ several robust frameworks Emﬁ .a@&ouﬂd cani®
. _;.q. mﬁq.nnm-_umm& applications. Frameworks incorporate libar
puld Hmﬂmwwmnmm that developers need to _.:.:E. 535@9&9.
%ﬁmmmwo:m. Here are some mxm:.EuHom = , 1o " |
(i) Spring Boot is a highly H..mm,mama Wmﬁoﬁoaw on_.&mwm s
o which is a technique for building highly .aoo.ocﬁ_ma_,m.w .
known for simplicity, flexibility and support ﬁo._. distributed Program
techniques like inversion of control and mmﬁ.movoﬁosan pro grammin g
permits developers 0 choose between multiple web servers like Tom,

and Undertow. .

(i) Jersey is a RESTful Web Services framework for deyel

of RESTful webservices in Java. RESTful refers to a popular de)
technique in which messages between microservices are handled wi
web-standard HTTP protocol. Known for its ease-of-use, Jersey pro
support for JAX-RS, a Java application program interface (API) sp .

for the development of Web services. e .
: (ii) Swagger is a framework of development using APIs. T
consistent descriptions of APIs that machines can read and that can s

microservices.

€55

injectio

documentation. Swagger also automatically generate client libraries forAll

in a wide variety of languages. i

- 0.33. Discuss various technologies and development techniques
in microservices. s
Ans. The microservices approach to application development hasi
enabled by a number of new an:nomomw and development techniques
(D High-speed, _o?_&mnow networks enable mo_uEmaom,ama.
applications to be constructed of services from many providers. o
an %ﬁ:nmmon can call a secure document si gning service or fraud dé
Service in milliseconds in order to close a sale. | 3
(i) Containers are lightweight virtual machines that com&f
structure elements necessary to perform a service. Th
and shut down quickly. with minimal management o<m~.rmz,
0 be encapsulated in its own container and stored in & I

_“ K

launcheg
Service cg

 central symbolic world model and complex symbolic reasoning are used. Agent

situation,

e

Software Architectyre Models g Styles w
s 63 {

(iii) RESTful APIs are defined by whatis.com ”
AP]) that use HTTP requests to GET, PUT, pOs
e jow-bandwidth way wOa.mnE_omm to communicate
They T rd set of commands. This makes them well-syit
ns on the Internet. The population of servic
g programmableWeb lists more than 17,000
decade ag0- Not all EmnwomQQmomm are RESTful, but all are message-driven,

(iv) Uaﬁvﬁoa databases have multiple services handling data
equests. Each service works on a mﬁ@mmﬁ of the data and coordinates results
M_.\:_u pfher BERVIERS Vig. &0 owo:mm#mso: Ewﬂo:ﬁ. This allows for highly
calable applications to be _u::.ﬁ at low cost using commodity servers.

.-(v) DevOps is an agile programming technique that emphasizes
dularity, frequent releases and a constant feedback cycle.

(vi) DataOps combines the concepts provided by D evOps i sl
lagers in e Bmzmmmaosﬁ. ma.a av E_N&EJ\ of data models. This enables the
ability to quickly productionize intelligent machine learning models without
the old approach of throwing the model over the wall with fingers crossed
that someone else will figure out how to put it into production.

applicatin 't o
oo
with each other EEW
ed to loosely Coupled
©S exposed as APIs s
APIs, up from just 300 a

interfaces (

s

mo

Q.34. Explain in detail the reactive architecture.

Ans. Reactive agent wnor:on?.an is based on the direct mapping of .
situation to action. It is different from the logic based architecture where no

responses to changes in the environment in a stimulus-response based. The
reactive architecture is realized Ew.oumr a set of sensors and effectors, where
perceptual input is mapped to the effectors to changes in the environment.
Brook’s subsumption architecture is known as the best pure reactive_
architecture. This architecture was developed by Brook who has erifiqued on -
many of the drawbacks in logic based architecture. Fig. 2.19 illustrates an.
example of reactive architecture. The fig. 2.19 shows that each of the percept-
Situation is mapped into an action which specifically responses to the percept

Mapping @;

Perception w¥

&g

MNQ
¢

ol

Environment

7z

Fig. 2.19 Reactive Architecture

4
i

iff
!

/ :.f;{(f,l

ST

143

Software Architecture Models & Styles 65
s

itectureés

G4 Software \Ja: w - umption architecture is that intelligen, }, y

The key idea © s olicit representations and abstract reag, o._,mig sical architecture 15 based on the traditional artificial ;
can be mmmmnﬂmm ,.,_Ecw:ﬂm __wan:nm '« an emergent property of certg; Ning f__ﬂ This clas _.%_.mmm:a:m and modeling the environment .m.EM "Mﬁsdorn
muéco:.nE techniqueé: now_mna% is _.:,_Eaﬁaimm in [inite mﬂmno: 853 %_.om% cME mm_.ﬁ‘co:o representation. Thus, the agent behaviou ¢ agent
systems. m:cmcam:o:oww:moﬁa to sensors that perceive the m=<_.:mnz_zw ra_asoi g_,._@_am:o: of the symbolic representation. our is based
with &mﬂwiuw%mwmm ~ction 0 be no_.pqoﬁsoa. A set of Sm_?mooohowsg_ on ihe :_m“_um e in this classical architecture may also be oonm.aﬂom
changes an H:mwa i the decision making process. Each of the carm% _ngn | Agel overs. The syntactical manipulation of the symbolic representati as
wm:mﬁoﬁ_: mﬂmm +n individual function which maps changes in the msﬁﬁos. a Mheore™ ﬁﬂamm of logical deduction or theorem proving. As an instanc m::m
vw sz,ommm Mma. Multiple pehaviours that can be fired simultaneously wmm (he En_,:oium, the agent specifications w&:smm how the agent anwméom
M_“mhamammn of subsumption E.m_:ﬁmnﬂc_.m. H:.o m.ﬁdmcﬁ_u:os mﬂnrwmammﬁ [,MHM__M mom_m are mmumamﬁa N.EQ what mn:.os the agent can take S‘mmmm@w
C o archical STUCTUTE represents &m@nﬂ: behaviours. The lowest layepi: ,ﬂw 9 ! gotls- An example of logic-based architecture formalism is as follows —
hijerarchy has the highest priority- .?mwmm layer represent Eoﬂo‘.wg i i) Assume that the environment is described by sentences in L and
pehaviour than the Jower layer in the hierarchy. Complex behaviour is aghiq.. bt | owledge pase that contains all the information regarding the environment
through the combination of these T ONeg fihe @25:2:9@.25 is the set of possible environments. Ex
behaviours. Fig. 2.20 mwo.am action . (if) For each moment of the time t, an agent’s internal state is

d architecture. In | osented by KB = (KB, KBy, KB, --es KB,) where KB; € KB.

selection in the layere
this layered architecture, the lower the

layer the higher the priority. The lower
layer will be the primitive behaviour and
higher layer will represent a more
abstract behaviour.

- 0.35. What are the advantages and disadvantages of reactive E.n@mmm
at it is less oo&mmam

Ans. The advantages of reactive architecture is th 3
fo design and implement than logic-based architecture. An agent’s ‘cmm.mm.mﬁ
is .SBEEmoumE tractable. The robustness of reactive mBEﬁmoER& \gain
@ER 5 another advantage. Complex behaviours can be achieved from (¢
interaction of simple ones.

The disadvantages of reactive architecture include —

o determité

ﬂw_ﬂo next : KB x P ->KB: .

(iii) The mOmmEH environment states are represented by 8 = {s;: 55

(iv) An agent’s reasoning mechanism is modeled by a set of deduction
p which are the rules of inference.

(v) An agent perception functions as see * S>P

(vi) The agent’s internal state is. updated by a perception function

can,choose an action from a set A={a;, 8, b
in terms of deduction rules. The outcome of
function do where do : A% §=>8. ,

1 (viii) The decision making process is modeled through the rules of

m‘m erence p, if a do : A can be derived, .&wxy is returned as an action to be best
rformed, else if do : A cannot be deriyed, a special null action is returned.

(vii) Thus, agent
dion : KB -> A which is defined.

YR

| , ; ; i
E agent’s actions is drawn via the

o (i) Insufficient information about agent’s current state t pe
¢ 42%% M,Msom due to modeling of environment available. | 0.37. Describe th blems of logic based architectare

3 e processing of i : . angbl T e problem of logic base architectu
capabilities in long term or m.o Eo. local information :B.:m Eo w _uu _:ﬂ Ans. The simplicity and el £ logical semantics of the logic based
Meiiod igger picture and hence, learning 15 difficu BB cctore is attrantive, h elegance _o m“um_H i D e
i B ve, there are several problems assoctd cb.
(iti) Eme i ich i : i ,.,.m_m, o, the transducti impli roblem of translating modeling
) Emergent behaviour which is not yet fully understood maKE Wt symby i SEMWM%MMMMMB M:MHMM_%M? o tanlate and MO 4¢l the
. ccurately for

€ven more intri ;
nfricate to engineer. Therefore, it is difficult to build task-spev

agents,

ture i :
. re is one the earliest agent architecture that 1
ystems hypothesis. 4

Physical-symbo)

] “.._<=.OS s, ot ; . .
, ment’s information into symbolic represe

ptation a
nt. Secondly,
that is suitab]

it is also

onme
e for the

0 :._ﬂ:.wm - : .
d tion process especially complex envif

0.36. What d. i}
¥ o you ; ; - Rillicy : :
s, Logiods you mean by logic based architecture ? o nzm.:. 0 represent information in a symbolic form iy, the
deliberati gic-based architecture also kno h Go:nlcmm@% (B9 "'S 10 reason with and in a time constrained environment. Finally,
ative archit wn as the sym o Eensformag; describe the
itec e e Mation of percepts input may not be accurate enough 0! i
- B{""onment itself due to certain faults such as sensot error, reasoniné it

liiiA

A

i
i

]
I
1

to web services section if you are only interested in the applicationo

66 Software Architectures

Software Architect
ure Models & g
tles g7

etc. It is very difficult or sometimes impossible to put down all o fuleg g
o and hence no type checking in REST _ i

-tuation that will be encountered by the agent in a complex envirg, ¢
Mwwwmanomoc process is based on £t oL ieaeh Emmm.. The mm%“ﬂ”f_ | 0 potio? & wpﬁm,m semantics of interaction right. TS up to the
calculative rationality where the world doce 1o change in a signip, Ml " ptions - mmﬁ interfaces are so simple and general, an :
while the agent is deliberating is 1ot peatiiiis. Assume that on H wz ’ pecaus® R rver, using the REST operations (POST. m:« LT cien can
ies to reason an optimal action for that particular time. However, the 0 4l (3any e mm ation. That buys you syntactic intero, EL.PUT, DELE)
result may only be available at time where the environment has alreagy mwa - ﬁ_ﬁ_d o furthe” = _mw_w&cc._ﬁm_ agreement about what M%mﬁgr »butof course
so much so that the optimal action for time t; may not be an optimg) m%..wg .,___R st be organt :noa they exchange. That is, seman €S€ programs actuafly
time t,. Thus, due to the oo:%cﬁmmo:m._ noEme_Q of theorem 39. g) ;waa what informa ® toes it becants T rw v WMm_M, Eﬁﬂ%ﬂm_o:& is not
this approach, it is not appropriate for time constrained domain, g, .bmaamma petween S€ oty ot . Interfaces.

! g] " REST, on P L by -descriptive and in the best case
0.38. Write short note on repr esentational state transfer archige,, RE e ?cﬁooo_. Consider the following example, in REST, of i
Ans. Representational state transfer (REST) is an abstractioy gl wm@a_éam that allows someone o look up a person, given some :a@cw
architecture of the World Wide Web; more precisely, REST is an m&EM& ow.mwn tor that person = | .
syt GAHEIATRE of a coordinated sct of architectural consgggl ,nmEu__.m_@ _ %w%é%.%%Nngggnoawrouogowam&bmo\coooo
compopents, connectors, and data clements, within a distributed e . } s .
mﬁﬁ%a. REST ignores the details of component implementation mwwwmwu_ 0.39. Explain E_.E.; Q,R Nm.h Tful web services. |
syntax in order to focus on the roles of components, the constraints .&3 __: Ans. The web mﬁ@fnmﬁou SEor.wocoém.Eo REST architecture we cal
interaction with other components and their interpretation of significan; 4Bt as RESTful web maﬁﬁom..wm.mﬂmﬁ web services uses GET, PUT, POST and
clements. " JDELETE http methods to retrieve, create, update and delete the resources.
| The RESTful web services architecture is shown in fig. 2.21.

The term representational state transfer was introduced and definfy
2000 by Roy Fielding in his doctoral dissertation at UC Irvine. REST hag}
applied to describe desired web architecture, to identify existing problem

RESTful Web Services

" compare alternative solutions and to ensure that protocol extensions yo ey
not violate the core constraints that make the web successful. Fielding develyt 4 -
REST in collaboration with his colleagues during the same period he wot Client = I HTTP |— wﬁ%

el » = erver

on HTTP 1.1 and Uniform Resource Identifiers (URD).

The REST architectural style is also applied to the developmen
services. One can characterize web services as “RESTful” if they confom
the constraints described in the architectural constraints séction. See theapy)

FRES

Fig. 2.21 Architecture of RESTFul Web Services, and The
Commaunication between:Client and Server

] E.mme (representational state transfer) as the name implies, it has to do
] ith client and server relationship and how state is stored. REST architecture
+based on the client/server architecture style. Thus, the requests and responses

web APLs. : e
REST, on the other hand, is a client-server-based mnow:moah.m_. style _ “;.M 9.:: based on the transfering process of the resources. All resourzes mmm
delete (CRUfFeMified by unique uniform resource identifier (URD, wh.ch typically

is structured around a small set of create, read, update, Ao . the
operations (called POST, GET, PUT, DELETE respectively in the Wmﬂw Sents a document that captures the state of the resource. Generally,
and a single addressing scheme (based on a URI, or uniform resource idé?]

ot of W

PES :
T style architecture is much lighter compared

0 wD;m :h_ T 0 mw__ .
. L oom 1 I » 4
not m@ﬁ:..@ h.f rmats :.—A E ; "irstna el ".“_m-_”_m“ww:

REST imposes few constraints on an architecture — SOAP offers ooaw_.%__ B inclydeg ; i
REST offers simplicity. ~BOAp s.owm in the message, like it is required I | vjpstname
REST is about state and state transfer and views the web (and the 1 ecture. In the other hand it parses JSOB

] : . .s_z_smf,am_ ; -
M”M: service-oriented systems can string together) as a huge HH”_,M_._ g change m:gﬁ_ﬂﬂﬁ.#m:m:mmw amm_m:& to Mﬁowmmﬂw Fig, 222 ASimple
ormation that is accessible by a single URI based addressing 5¢ - B con aKing it easier to parse a N D nt
: - y gcunie
. & . ., _,%Sﬂ:m_.. It is estimated to be at around one JSON

mes faster than XML.

/

A R

4/
15

I

i

i

L 115l

e

-

68 Software Architecfures
There are several principles that designing RESTFy| weh

Software Archj,
ecture
Seryj Models & Styies g

Addressability is a REST principle where the datasels are g, ety (iv) REST requests (especially GET) are not suitap gy,
as URI marked resources. Statelessness is another princip]e thag ME. Tlarge amgyg
of a REST service will have to follow. This means that every ﬁ.msmmm o Bl of datd: (v) Lat ency in request processing times and bandwigyy

g usage,

Ey, _,
0, o 4

be independent and must not be related to any previous Q,msmma:o

-y REST APIs end up depending on b
data required to perform and process the request are containgq on{ (vi) g eaders fo

T stat
ent requests to the same back-end server thath e g

> G o < ha bsequ) andle :
thus, the server will not _:.:6 n.u maintain client session data_ Unify ﬂ te su o or authen tication). Use of headers is Sl ﬁ.&rm Previoug
requires that an interface is uniform and standard used to accesg Ema._._ date, seunapott 1es the AP t,
T ﬁ as a

i.e. using fixed set of HTTP methods. If the service deg; gner o, .
principles, than it is almost guaranteed that the REST dg A

simple and lightweight. | Wi
REST is becoming the go to for system interaction whic
usage of RESTFul web services mostly the way cloud Provide

0.41. What do you understand by SOAP ?

ns. Simple object access haoﬁooom (SOAP)isa messaging protoco] fha
- mEu:om:.o:m to communicate using HTTP and XML. It Iepresents g
amentally stateless, one-way message exchange paradigm between nodes

%@:25:

fallo
" i

y mnn_c.ng

: 1S expg bining one-way exchanges with features provided b i

. ot . combining nge: ; p ed by the underlyin

services. In the ﬂdmncMMMMrw ,w\ E.MWM nmﬂq o.ouuo_mao Emﬁ. Most of Ww_.s%on protocol and/or application specific information, SOAP can be wmmm

projects are vmmw on u @w 1€, In orderito Create and p, | .reate more complex interactions such as request/response, request/multip].

professional services. Not only the tech giants like Facebook, Google s,.i - onse, etc u i
A resp ’ :

use REST these days. This, because thanks to the REST architectype

; ; : X : Irg, f invoking web services i i :
application is able to scale horizontally in the easiest possible way. The process O g TVICes Is very important; therefore the

SOAP protocol is established to exchange message between service providers
land consumers. It is a structured XML message format for exchanging data in
la distributed environment. It uses an underlying transport protocol (HTTP,
ISMTP etc.) through binding. There are two version of SOAP— SOAP version
1.1 and SOAP version 1.2 which has brought some new benefits—It is cleaner,
faster, it has better web integration and more it is versatile.

There are three main types of SOAP nodes —

0.40. What are the advantages and disadvantages of REST)
Ans. Advantages of REST — : 2.

(1) REST uses smaller message format and provides cos .

over time and better performance because of the JSON messages
makes the communication and there is no intensive processing req 5

(i1} Learning curve is reduced.
(iii) It supports stateless communication.
(1v) It’s simple to learn and implement.
(v) Efficiently uses HTTP verbs. £
(vi) Light bandwidth since its passes message is JS
Object Notation) format.
(vii) It can use multiple other formats.
(viii) For security it uses HTTP standards.
(ix) REST can be consumed by any client.
(x) It makes data available as resource.

(i) SOAP Sender — Generates and transmits a SOAP message.

| (i) SOAP Receiver — Receives and processes the SOAP message
and it also may generate SOAP response, message or fault as a result, and

aae

. (i) SOAP Intermediary (Forwarding or Active)—Itis both,a SOAP
feceiver and a SOAP sender. It receives and
Processes the SOAP header blocks targeted
A1t and resends the SOAP message towards
and SOAP receiver. This process is illustrated
i the fig. 293,

The SOAP message has a structure,

SOAP
Sender

Ummmaﬁsﬁm@m of REST — : n_w._c: is characterized with two SOAP-
(1) It’s not suitable for large amount of data. ?a, | =<M___ '¢sub-elements within the overall SOAP
(i) Comparative SOAP it does not cover all varieties .- | ngwm e elge yaichys m%wm AP Nodes
; . i i g J env:H P Bo : a
standards like Security, transactions etc. : (env:Bogy) cader) and a SOA 4 Fig 2.23 50.

(iii) REST is not reliable.

e e

ELAL1) 31

e S

|
1
1§

70 Software hﬂ?ﬁmogﬁmw

U

SOAP is a lightweight independent protocol. It is i

Software Architectyre Models g Styi
es 71

5 e the advant ;
lightweight because it does not matter what OS or what Em%%.am@mm : 0. 42. What are the g mOaMMn and a.ana_‘aaaw& of SOAP »
ased from — it responds in the same way in any platform o“:mv I8 e Ans. The advantages 0 w:.m. as follows — e
possible because of XML and HTTP protocols. 3 Al (i) Its platform and language independent. T

There are two types of SOAP messaging requests — Re :
call (RPC) and Document request. Each of them are treat {0t Drog,
subsections.

(i) Remote Procedure Call — A remote proge dure. o8

" execution of a procedure in another remote address, usually op w:oww H.gﬁ._
in the same network, which is previously coded and it is ou:&. nﬁae@?
procedure local call. Thus, the programmer will only have tq am< Hmm,w_a |
once, and it does not matter if the call is performed in loca] or SEQ@OM% ? f
— ég

P Client Machine

Client
Program

A“_—.mmm.:.. WHOWHmﬂw .
Ocnnﬂzmm 5

Call RPC

Function | 1pvoke

Service

Request
Completed

Call
Service

Return
Answer

Service

Service Daemon Executes

(ii) Uses XML to send and recejve messages,

(iii) Its vendor.neutral,

(iv) Utilizes WS-* efficiently along with security,
(v) Its firewall friendliness.

(vi) Universally accepted i.e., costis not tog high forj
(vii) It also supports asynchronous messaging,
(viii) It makes data available as services.

(ix) WSDL fully describes SOAP.

mplementation,

The disadvantages of SOAP are as follows —

(i) Too much reliance on HTTP
(i) It’s not stateless

(iii) At times it’s slow too because of XML generation. Also the

i ,."..,u .,.muasEE gets heavier due to its format for message generation.
| 0.43. Compare the SOAP and REST, .
Ans. The ooiumnmoc between SOAP and REST is shown in table 2.1.

Table 2.1 Comparison between SOAP and REST

Server Machine

so4pP REST

Fig. 2.24 RPC Lifecycle e

This procedure represents a client-server model _.Emz._o.%nr
implemented through a request/response methodology: These requ 1
responses are formatted in XML usually, this communication is synchot

which means that when a request is sent, the app is blocked until thezesp? (if)
is processed and returned. R
(i) Document Requests — While transmitting information

client to server or vice versa through document requests, the MZH_% _~ (iii)
is passed in the body of the SOAP message instead of as paramefel &

For example, a service named purchase order expects 2 mogﬁm_p & (iv)
document) as the input message. When the request is sent t1roUg
message, requesting the PurchaseOrder operation, it must confail ap (v)

: is proct
order document as input in the SOAP message. The requests 13 p %._a
S00n as it reaches the server, and when processing is done; al

. ! . info
document is returned ag response, which might contain any i
related to that purchase,

Changing services in SOAP:
So,rwwmcimwoaum often means
a complicated code change on
the client side. o
SOAP has heavy payload as
compared to REST.

Changing services in REST web-
provisioning not requires any
change in client side code.

REST is definitely lightweight as
it is meant for lightweight data
transfer over a most commonly
known interface, - the URL

It requires binary attachment
parsing,

SOAP is not a wireless
Infrastructure friendly.
SOAP web services always
Teturn XML data. :

REST is a wireless infrastructure

friendly. : £
While REST web services provt e
flexibility in regards to the type of

data returned.

S
v i
TR

R e o s L

It supports all data types directly.| .

72 Software Architectures

(vi) | It consumes more bandwidth It consumes legg ban
because a SOAP response could| use it’s response g |
require more than 10 times as
many bytes as compared to REST.

(vii) | SOAP request uses POST and [Restful APIs cap be o iy

require a complex XML request | using simple GET re Ongyp ” Mom.—.eaam D—an—_——.—.m —_——wm ;
Howaoamﬂmaiioramwmm Em&mﬁ EouQde_. ; : . . P, —gvfmgmz.—.’.—.—oz _ﬂ,
.ﬁ

dwigy,
1ghty,

by

€ip

e

ERUERER e & SR e T i e g

response-caching difficult. proxies can cache
very easily. : T .—.m;n—_—zo—.oa—mu 5
= (viii) | SOAP uses HTTP based APIs | REST on the other Aol A R ,.M..m;..-,wn.ww.m.._?“. W
¥ refer to APIs that are exposed as| element of using mﬁmuwwa. adg S ‘
one or more HTTP URIs and | URISs, and also givip, ardj CH. ﬁmnawmammnﬂuvﬂoz;zmcrmmm "

typical responses are in XML/ [to the HTTP verh :mm ME OF
JSON. Response schemas are | POST/PUT etc.) (

TRUTS, HIBERNATE, NODE JS, ANGULAR 1S

o . custom per object. = | .1 Write short note on software architecture implementation
(ix) | Language, platform, and trans- | Language and Emn,oa,u.mm: urotogies.
: Sme (4 g 5
port agnostic. : Ans. Once the blueprint of software is complete then it is given to the

(x) Umm_mnnm to rm.uﬁ:m distributed ?mm:.Bmm m_uomﬁgo.ﬁogmnoé% jevelopment team for the implementation of product. The design notations

computing environments. nication model—not for distriyy | ;e now: converted into algorithms or pseudocodes compatible o the

computing environment wher environment and platform of development. In this platform is referred as the
2 ! message may go through or 1] selected operating system, programming constraints, programming languages,
intermediaries. " Bl eic. The pseudocodes and algorithms are written for various modules and
(xi) | Harder to develop, requires tools. Much simpler to develop web || interfaces of these modules. Finally, now these pseudocodes are converted
Is the prevailing standard for services than SOAP. Lackof [into programming language codes which can be compiled on a selected

web services, and hence has standards support for security, # compiler. From this program, machine language codes and object codes are
better support from other policy, reliable messaging, ¢tt, | generated and executables are obtained. According to research, 40% of the
standards (WSDL, WS) and so services that have moresop total development cost of the software was consumed for software
tooling from vendors. sticated requirements are hard¢ [l implementation (see fig. 3.1).

to develop.

Documentation
19%

System Test
15%

Installation
1% \

Implementation
40%

ution Qver SDLC
uted in a single
ous _ﬂ<ﬁ—m.

Fig. 3.1 Estimated Cost Distrib

- Uenerally, the implementation phase is not exec
"Plex software. This process is distributed into var

go for

74 Software Architectures Software Architecture Imp;ememaﬁon "
o chnolg

(i) UnirImpIemenfaﬁon—Aﬁer completing the deg; . ; gies 75
and its components, these components are implemented ip SOmé Of gy

level programming languages. These modules/comp(,nents Sg oty d
individually, independent of each other, in strict accordance ‘:i Aoy §

document, level language. This is called uuit-implementation

ing also supports a mixture of both Hy |, (hi

: gh le 4
Jrogrdt gramming code like assembly or binary vel language-) e

oW jevel PO - . machineicode.
() Programmning Pftrarhgms ~ Each language s & !
ing, there are called ‘programming paradigms” Eac, = n 5“)’[6.0{'
has its own view point for execution of software p Bramming

High-level Language Compiler Assembly parﬂdigms rogrammi %
Source File Language File o Exﬂmple _ i
ic Paradigm — In thi ; :
(a) Logic Paradigm — In this paradigm, program is wriien a

| Object
Assembler Cods Fils
More Object :
Code Files Linker

Fig. 3.2 An Example of Conversion of HLL Code into Mg

d truths, whose answers always come in the form of tru
; | 01 true or

setof predicates an

E‘a|se OHIY'

(b) Function Paradigm — In this paradigm,”prrogram is a
nctions invoking each other and implementing the task of the

&
£l

| collection of fu

’ system.

o e . : hine Cy
_ (i) Unit Integration — Once the units are impleme Yl
integration, they are tested under the unit testing phase of S%eﬁi’ by
completing testing, these units are interfaced to make them interact C“:;A are written &
other to implement the tasks of the software collectively. Ma S like identity, scope, state, behaviour, etc.

(c) Object Oriented Paradigm — In this paradigm, program
s a collection of interfacing objects, each having its own details

interfacing modules are needed to be written for this. After :E;:" t.iﬂt:;::@] qF _ gt
modules are coded and compiled and executables are generated f,o?théﬁp | Everyprogramming language support different paradigm like Java support

the units of the software are not integrated at once, this step is also executedif | object orientecj paradigm.

needed phases. Some um't; are integrated to form large modules, at first, A Toward more
that, these modules are integrated into large components and finally Modularity,
complete sofﬁ_vare 1s built. These integrations should be performed strictlyiff! l::;sé:ol\gbﬂjty % :
accordance with the design obtained at before. = ; : 01:? ecwﬂr:nif
j | > ogramming
sie . 3 % Modula:
_(uy Software Programming — Now programmer write a code Jif Prog‘:-aﬁml;ng
these unit/module in HLL like C, C++, Java, PHP, .Net, etc. Mo Procedural
i : . Prqgr;;mming
l Provide Suitable CommentsJ : Pf(:;:;t;lr—:glg
;] Il}'[achine
- i | anguage 4 —— t 't
Use Stfmdard Identifiers for o Use Standard Identifiers for 1 L 1980 19l90 2000
Variable/Object Names Function/Methods Names
Fig. 3.4 Evolution of Programming Paradigms

of software: design

Software it (v) System Implementation — At the time i - Sihus
i - § o : ! st
Programming . €¢ss, the software units are integrated a{}gltshz ;?tzg’ i sl
L .

Cl‘emed as

; a union of the components.
i mlEgr

. ated with its environmental constituents, inc
i I i .

ol MMunication lin es, routers, third party software
e 18 (see fig, 3.5). |

[uding different hard{ware, ;
pmducts and display

Indentation Even|
Use Standard Identifiers for [i;e;léftllj-‘;':ee Programmin

Class Names - L anguages

Fig. 3.3 Attributes of Good Programming

1

Database (

Inventory Seolution

Deployment Solution

Package
Server

Deployinen t RECﬂVery

Patch Management

Software Delivery
Desk View

Operating System
Fig. 3.5 System Implementation

0.2. Define sofiware architecture description languages.

E.
Ans. More formal approaches to describing software architectures hor ‘
emerged in form of architecture description languages (ADL). In compari{

software architecture description languages are more in the solution domatfy

a graphical representation that maps to the textual representation.ADL;S:Sﬁ" ‘
have, ability to represent components and connectors, absl:ractmﬂ'f{i |
encapsulation, types and type checking, and an open interface for ana_ly: :
tools. And in architecture description languages shall have compon¢r s

ey ol ar?
dynamic architectures, causal ity and time support, and relativity of comp®™

At this point, over ten architecture description languages have B

. i |
presented, e.g. Rapide, and Unicon. In cight ADLs are surveyed and 0 & T

on different featyres,

to requirement specification languages that are more in the problem domﬂ?ﬂ Zeneral p

Most architecture description languages have both a formal textual syné fereaip

= . i 4 i = Ort i
communication abstraction, communication integrity, model supP Fland|

3° s = = S Eaas STEE
70, Semere prentecres Web Console - Software Architecture Jmplememaﬁo" To
i : by Chnologies 77
?xiﬁi’ﬁ?c\sﬁ'é http:// : what are the clmmctens‘*ncs of ADL.
Remedy Help Desk - S ﬁ 5. here is & Jarge variety in ADLs d_eveloped by either acagery;
SNME Conkectors Reports E | e Many lzmguage's were not mtf:ncled to be an ADL b:’:l :hm
1 0 a' i %;e suitable for 1P resenting and analyzing an architecture, h:pﬂnci ely
%gl:e% = iy Oudti{;’fer from requir emeqir:?ngtzaf:s, “)l:;ause ADLs are rooted ip Ehz
fgggg = 2 j;jl 4paces whereas requir scribe problem Spaces. They differ
Notification i "tmﬂogrammmg languageS’ beca.use ADLs df’ not bind architectyrg]
o ' = ' ma}:;l;ions to specific point Salgtags; M?dehng languages represen;
] e ADL o on s of e e,
System 1 are domain spccxﬁctsmo g languages (DSMLs) that focus on
Alert Manager resentatioﬂ of components.

Viinimal Requirements — The language must —

(i) Be guitable for commmﬁc-Elting an architecture to all interested parties.
(ii) Support the tasks of architecture creation, refinementand validation,
(iif) Provide a basis for further implementation, so it must be able to

" 4 information to the ADL specification to enable the final system specification
rn be derived from the ADL.

(iv) Provide the ability to represent most of the common architectural

Server e styles.

(v) Support analytical capabilities or provide quick generating

@g ototype implementations.

ADLs have in Common —

(i) Graphical syntax with often a textual form and a formally defined
tax and semantics.

(ii) Features for modeling distributed systems.

(iii) Little support for capturing design information, except through
urpose annotation mechanisms.

(iv) Ability to represent hierarchical levels of detail including the
of substructures by instantiating templates.

ADLs Differ in their Ability to —

(i) Handle real-time constructs, such as deadlines and task prionties,
the architectyra] level.

(ii) Support the specification of different architectural styles- Few
¢ Object oriented class inheritance or dynamic architectures.

(if1) Support the analysis of the architecture. peltion
I (iv) Handle different instantiations of the same architecture,

Uct line architectures.

o T e
SRk L A

4
i
i
|

1
i
1

78 Software Architectures

0.4. What are the positive and negative elements of ADy.
Ans, The positive and negative clements of ADL are 44 f()”?
Positive Elements of ADL —
(i) ADLs are a formal way of representing archilectul-
(ii) ADLs are intended to be both human and machin:
(iii) ADLs support describing a system at g J .

previously possible 3
(iv) ADLs permit analysis and assessment of : i
| : Y5 archit ache Struts web framework is a free open-g .
completeness, consistency, ambiguity, and performance, - elcvtllresl AnS: The f; l; b applicafions- It uses the Model—VFewCO:;:r:?Fhmon i
(v) ADLs can support automatic generation of softwape i cating ?n The pattern divides the software system into three g; SEM‘«'C)
Negative Elements of ADL — oy " 1.1 view and controller. The controller is feSponsit(::lEafn ;
or

(i) There is no universal agreement on What ADLs sho

Software Architecture !mpfementation Tech
nO!DgfeS 7
9

. consists of interfaces, connections and constrags
(i iy

OWS . . .
5) Constraints restrict behaviour of interfaces
(a and’CQ“HECﬁﬂns

. C.
3 rc;hlte‘stllr ints in an architecture m ;
han 2 (o) Constra o ap to requirerents for 5 sysh
. ah, I . lement an Interface connection archit ! em.
igher | b i | ADLs imp itecture,
Sygl MO
Loy ; l

what do you mean by Struts ? Explain,
6.

e mOdela eyt i
ar quest, and deals with interactions between model and view.

C
rdin the ré

particularly as regards the behaviour of the architecture -E‘ld‘r‘ep iy oh view is used t0 interface design for displaying the data, like JSP page. The
aw . 3 .‘ e : i
(ii) Representations currently in use are relatively diffic o Rodel encapsulates DusInESs ! ™
and are not supported by commercial tools. Culttop, fogic and data ProcesSlng g 3
; inod, and can direct operate Request
me ? - HTTP, CLI, etc.

(iif) Most ADLs tend to be very vertically optimiz as access to the

ed towafife data, such

particular kind of analysis. m view l HTML, RSS
; y Gatabase. The th;]l 1€ Controller S el
Q.5. Discuss on the common concepis of architecture. - Mntroller diagram 18 & own 1n Deman;l//‘ Data \ 7 e
Ans. The ADL community generally agrees th i e 35
at softw. e :
g yag are architectur; There are two versions of Model View

set of components and the connections '
7 7 among them. But _there aljgl_gllff Kiruts (1 and 2)’ but because Of Database, WS, etc. Templates, Layout

kind of architectures like —
i<t lheir large structural changes. Fig. 3.6 MVC Pattern in General

Object Connection Architecture — .. : ap g
3 0.7. Explain in detail about the Struts 2 with diagram.

I : i : ; i
ObjeCl-Ol“ifir)ltgdorsl}f’iS%g;:.L fon consists of the interfaccs anCECEE - Ans. The Struts 2 is the second generation product of Struts. It is the
(ii) Interfaces specify the features that ' tb ded bymnil esult of a merger between Struts 1 and another framework cailed.WebWOrk.
A interfap features that must be provided by TSHimts 2 selects WebWork as the core, using interceptor mechanism to degl
ce. i bith the user’s request, this design also make the controller of business logic
(iii) Connections represented by interfaces together with call g#ftompletely divorced from Servlet AP, so Struts 2 can be understood as the
g langi pdate product of WebWork.

l ontr:llllzhigh-.level design of Struts 2 follows the well-establ
MvVC dez'deSIgn pat‘-;em- The ‘Web Browser Client
three digt 180 pattern identifies L’—-R =
B Inct concerns —model, eq

" ndcontroller. In Struts 2, Controller Filternispatcherl

€8¢ arg
i(:) ::re mplemented by the
i TeSult, and Filter

(iv) Conformance usually enforced by the programmin
(a) Decomposition — associating interfaces with unique
(b) Interface conformance — static checking of syntactic”
(c) Commuinication integrity — visibility between mo‘»i;!l: e

ished model-view-

Render

Interface Connection Architecture — i

(i) Expands the role of interfaces and connections: ‘
(a) Interfaces specify both “required” and “provided"’*f‘??‘ ;

Invoke Action

: Rl k!) -
g (b) Connections are defined between “required e Fore csher’ respectively. The Maadel et Tedberies ents of Strits
provided” features. 2 Showy, "Ponents of Struts 2 is Fig. 3.7 Three Core CompOr
in fig, 37, i DMVC

|

{
I
5

J

SRISZEEAL

B

80 Software Architectures
Software Architecture Implemen tation.T
n ec

hm'JJog,ies 81

that do not really belong to the busj
Usinesg logic) f;
: om the

Controller-FilterDispatcher — It is the first compope
a HTTP request has been sent by the browser client. The 1_nt ; il . P
is played by the Struts 2 FilterDispatcher. The FilterDiSOII Of h, l"dw | nd log8" -
filter (a part of the Java servlet API which can be tra_nsparelt)latcher is% | I. ction Go-merceptms are invoked before and after i .f
application to perform operations against the servlet reunstOtl adi. Y The ! There’s a standard stack of interceptors e 0 for ey,
and its purpose is to map each incoming request against an ;;;' et
o

Model-Action — The model is implemented by th i
component. It is actually an ordinary Java class which ofiep e):t;Struf's
nd

e €Ty action
nly used by the actions. To use this standarg sta:kﬁ:(;m ..
eveloper

d one class (ActionSupport) in each action clagg

on issues that are handled by interceptors are il
ation,

us(.’rs !
t it’s Commo
1) exten

1. b ome comm p i
i fer (that’s how the form values are moved into the action), loggj
] 'ng,

or implements interfaces belonging to the S
to putp business logic (directly 0%’] ifdirectl ttljll-]ts Zhﬁamew()rk. ‘ piects from the Servlet API (like HitpServietReques) :
_ ‘ Y through calls to othe, o Uyl | > loading files and exception handii ntothe action
place to save data. (These two are often called the “state” of th Objeg rough setters: uplo andling,
The developer implements the action classes and deCiEIe: a] p] '_ 0.9 How to work Struts ? Explain.

he wants to add depending on the requirements of the busine:\;hllfh.f A-ns- We can see the general pro'_:essing of Struts 2 in fig. 3.8. First the

Ogic nds a request to the filter dispatcher which can map this reqUe’st to
ate action. The interceptors that implement common concerns across

developer wants to, the action can be made as sim 4
(s ple as an [
implements a method named “Execute”. This simplicity C}(’)i::: cl."'ss i | browsi;;;
W . .
!1th B anapP then called (in the before() method) in advance of invoking the
built into Struts 2 can perform core processing, like

“behind the scenes things™ happening in Struts 2. o are
b cn S | f10NS
A very useful feature of Struts 2 is its error handling, There’s: | Zztion itself. Interceptors
“acyy) ting request parameters into action classes, performing validation,
We can also define custom interceptors as you

whole framework for this contained in Struts 2. When it comes to erro opula
to certain form fields (like validation errors and type conversion enf o Eploading files, and so on.
ML Erors) (i) ¢ The action class typically invokes the business layer and populates the

can automatically be shown in the view page, as long as the develgy, | wan
mapped different error types of different fields, (either in an XMLﬁ]epeI- ?
method in the action) and is using the Struts 2 tag library. When the vali?ila? '
fails the String “input” is automatically returned from the écﬁon.lfthaS ‘
is mapped against a certain page Struts 2 automatically calls that bage foo

View-Result — The view is the presentation component of the Nif}
pattern. In fig. 3.7, we see that the result returns the page to the web brof
This page is the user interface that presents a representation of the applical
state to the user. These are commonly JSP pages, velocity templates, 0S8
other presentation-layer technology. While there are many choices for /7§
the role of the view is clear-cut — it translates the state of the application!®
visual presentation with which the user can interact. For the view pages™§
2 provides a big variety of tags. Three common types of tags ar® ata ;.
control-flow tags and User Interface (UI) tags. The data tags can be us
creating instances of objects and putting them on the value stack amonE®
_things. Among the control-flow tags you can find things like an “if” 3 i
1s useful for conditional expressions. The Ul tags generate HTY% n:;pﬁ
code. It can for instance generate a “select” tag including the underlyn8
“tag” from a Struts 2 UI tag with only one line.

Browser

HttpServletRequest

Struts Filter Dispatcher

Template
(Freemarken, JSPetc.)

Interceptor 2,0
Interceptor 1

quest Processing

ryletResponsé

0.8. Write short note on interceptors.

Ans. A veryimportant feature of Struts 2 is the interceptors.Jl“}ll(1 e] ;

: y . Fi 2 Re
is a reusable component which can be used for separating things Fig. 3.8 Struts

- authentication, session management, transactional business logic, web §
- application security, object relational mapping, ocalization, membership and §
- roles and URL authorization etc. The most popular frameworks available 06

 are backbone js, ember.js; angular,js and knockout.js. :

82 Software Architectures

model objects, which are instances variablc-:s of tlle.action clagg.
request is dispatched to the view layer (\yh]ch Is .bmll O a tegp, Iem‘ !
JavaServer Pages, FreeMarker, or Velocity), Whlch_ renders g, Ology i
interceptors are executed again (in reverse orde1:, calling the 4 fiey L 111:
Finally, the response returns through the filter dispatcher chain, methud!
Ofcourse, Struts 2 framework has more than just its My o 1
and also has a few other important components which are intemept(:rs[..’.gn.‘?ﬂu, |
(Object-Graph Navigation Language), and the value stack, These ¢, ’BGNL
interact together to implement a cleaner MVC design. mpn%h

0.10. What are the advantages of MVC architecture |

Ans. Advantages of MVC architecture are as follows —~

(i) MVC architecture helps u_s to control the Complexity 'Ofappii- ! :

by dividing it into three components i.e., model, view and controller Jcaﬁon
(ii) MVC does not use server-based forms, that’s why it“iS'ilde'al :

those developers who want full control over their application b CRavie iy
(iif) Test driven development approach is supported. by

iy

Mye

(iv) MVC use front controller pattern. F Tont controller'pziftejﬁhﬁﬁm |
the multiple incoming requests using single interface ('COntrbl'Ié‘r:)i':.}"?rbm |
controller provides centralized control. We need to configure only one controllx,
in web server instead of many. B s s

(v) Front controller provides Suppoﬁ:i;rich routing ZCOmmunibatfom

1o design our web application. S ot e
Q.11. Explain types of frameworks used in MVC. k. Tt
Ans. MVC framework provide us_some built in features such as fom |

architecture.

o (i) Backbone.js — Backbone.js framework is useful when 01;
‘Bpplication need flexibility, we have uncertain requiréments. Also, we Wil
accommodate change during application development. 3

) (ii) Ember.js — When we want that our application shoul(li lﬂ't::‘r
with JSON API than we should use ember.js framework in our applical

. 1t it
. (i) Angularjs - If we want more reliability and stability lll:iﬂ“
application, we want extensive testing for our application then We shol:S

angular.js framework, fie
_ (™) Knockontjs - If we want to make a complex dynamic 152
of application then knockout. js framework will be very useful forts:

o deve ‘;0 develop web application using MV C architecture,

visual §

Software Architecture Implement, tion T
echn

; Ologie,
ngcr”)e the tool and technologies yseq it My s 83
12 ore are many topls and technologies A g
NS b application With the help of MVC argyy
dc"clope-nteresl of developers, they can use any of the ok
i

up?” the " yeb application- Here are some tools and tecly

hican pe used
Seture. Depenging
Is and technologjes
nologies Which cap

e

_ visual studio is notjgst only a tool but a ¢
Tools "\ which provide us facility to create different
mewant to develop application using ASPNET
udio is very helpful for us.

- MYSQL Server — Relational database management server 1q
o the database- ' o =
(ii) SQL Server — A database engine to maintain database et
C L server.
MYSQ (iii) MYSQL Workbench — A database design tool.
(iv) Net Beans — IDE (Integrated development environment) provide
mlete environment t0 develop different applications.
o (v) Glassfish server — Java EE application server.

mplete developmeny

kinds of applicati
n,
MVC framework fhsi

mail’ltﬂi

Technologies — : ,
(i) HTML, CSS, JQUERY, AJAX for designing
- (ii) Servlet and Java server pages (JSP) used with Net beans -
(iii) EJB (Enterprise Java _be_ans) technologies :
(iv) JSTL (Java server pages standard tag libraries)
(v) JPA (Java persistence API)
(vi) IDBC (Java database connectivity)
(vii) ASPNET-MVC used with visual studio.

0.13. What do you mean by Hibernate ? Explain.
Ans. A very common issue in java development today is how fo map e
object oriented (00) Java code against a -
relational database. This is called object/ Ao

telational mapping (ORM) and Hibernate .

S a framework made for providing good Hibernate

solutj . .
olutions to this problem. It’s a so called oy

Persistence framework, properfies
B Hibemate also uses the Java EE 5 APIs /
(WC (ava DataBase Connectivity), JPA Database
'8 Persistence API), JTA (Java i
A y] itecture
ﬂ;finsﬁchon AP1) and JNDI (Java Naming fig. 3.9 Hibernate Avultle
D'rECtGI'y Interface). '

ey

(Plain Old Java Object) class, which means that it only hag arii®
and constructor access methods (“getters” and “setters™) fo; tE?m
the class. It handles the data existing physically regard|egg
execution. Generally, when developing an application using 1‘3‘13
business layer of the application handles the application data v;,
specific DBMS. But Hibemate-based applications can integf;?
data and DBMS with persistent object as the main. J _‘?
Persistent classes should not contain calls to objects in the‘-' b

persistence.
(it) ORM Mapping Files — ORM mapping files in Hibern
xml file like * hbm.xml. All the mapping information lies in fi{és::'ﬁ
re.sponsible for mapping the persistent classes against the défa
H%bemate creates SQL to be executed based on Hibernate Majipiug Mi
this case the code of the persistent classes becomes “clean” and Jl]Sthk J
. Tbere. are usually one .Hibemate mapping file per persistentfa@%@'ﬁss
The mapping file maps the id property of the Java class against a primary ky
in fthv: database, all the other properties against table fields and maps relatiors
f]?ld::‘] gP;S) _to othex; _persistent classes. Most of these mappings are easy®
i stan (_llk& the 1@” a"‘,j “property” tags). The hardest part is mappité
_Com_Phcated relationships (like unidirectional one-to-many which #

used in this application) and composite ids.
m CRUD

(iii) Interfaces Called by Java Applications to Perfor
ome interfa®®

SessmnFactory per application.

The session i - ing 8!
ssion is the key object because it has methods for hand!i"é amalc

CRUD operafione 115
Perations. [t : 2 . ibe
and DB connect is an object performing a connection betwee" G clost?

on, which maintains connection until the sessio *

he cDﬂﬁ

utomaticall
hlong with all the properties concerning

a

< LS

g4 Software Architectures
Hibernate consists basically of four parts — Software Architecture Implementatio, -y
; : . g : Mologies
: objects . 85
(i) Persistent ' i} N— . ‘ agasin gle DB connection on session development, A % .
(ii) ORM (Object/Relationa apping) mapping fijeq et open! biects) loaded by Hibernate is related with sessi the objects
(iii) Interfaces called by Java applications to perform ‘(’pc ;sisle‘“ Oautommica“y reflected by session or handleq w;:tll, the objecy
~ Read — Update — Delete) operations on the persistent le:tssescR D chané®® ﬂr: also create and return a transaction or query object lt?szy oy
(iv) Interfaces used for Hibernate configuration . Tty SessiO“ ::;ke sure that only one session per thread exists. - It18 not threaq
: o s) so! ; a0 1y
(i) Persistent Objects = A persistent object in Jay, ; safc oy ;ransaction can be used f?‘r separating different units of Persistenc
s d it must be handled “manually”. The hibernate query is used tz

a -

jing of queries ageu'nst the dz'ltabase_ Through use of a query object
is pelieved £rore havmg to write SQL code and can instead just 'tjal:
¢ of the class and the id value of an object. .

@) Interfaces used for Hibernate Configuration — An instance of
guration object mustbe cre_a'teq first when you build a SessionFactory
ctis responsible for the initialization and configuration of Hibemate-
w the values of certain paths and properties to the mappiné
classes (if that approach is used). There are two different

ays to.set these paths and values.
The first way 1s to use an XML configuration file. This configuration file
ust called hibernate.cfg.xml and is on the classpath, so Hibernate can find it

y. In this file you also can specify the mapping files that are used
the database connection.

sel

The second way is to use a file which must be called hibernate. propertics
nd must be on the classpath, but this can only be used for the database
connection properties. The mapping files must still be specified in the’
hibernate.cfg.xml file (it’s possible to have both). '

Q.Id. Define NodelJs.

Ans. NodeJs or just Node is the most important
:stack. It provides the JavaScript development enviro
Google’s V8 engine. Both Node and V8 are implemente
less memory consumption and faster performance. s
synchronous 1/O eventing model designed for developing scalable netvork
“pplications. Tt fires callbacks on events, and each client event generates 1S

own callback. If no work is to be done, Node is sleeping. While Nod.e AR

component of the MEAN

nment. It is built based oo °
d in C and C++ for
Node is based on

0, ; .
W{:g;tmns on the Persistent Classes — Hibernate provide s on g
devel can casy perform these operations. Four important interfaces that Jav :;dire ;mgle thread, it can serve many clients. Almost 10 Nod preseas
Thee élper.s need to use are SessionFactory, Session Transaction and QU) lhe(; Yperforms I/0, they are handled byhigher-order functions. t:chn;())iogies,
essmnFactory is used to create sessions th’ere i usually only one 1n0devdent-loop as a runtime construct, but unlike SOI]‘ille ;')ttl;;;ply o ers S

’ 0€s n : o 2 call.
E ot have a blocking start-the-event 1oopjavaScrip¢- Node also hes

Onp and 3
i eXist upon completion similar to browser cronment

 diffe,
st :“t mO(.iuleS that help take advantage ofam
S Creating child processes, sharing sockets efc-

ultiprocessor €1

86 Software Architectures

Q.15. Write short note on Express.js. Software Architecture Implementation Technoy]
Ologies g7

Ans. Express is a server side framework built in the Node]
It handles the.client requests to the server and manages !‘oul's e ID;[
methods such as GET, POST, PUT etc. Express configures Middllng ang]111
are basically functions that use the request, response objects , eWﬁres;)
middleware in‘the stack. It is the Middleware’s responsibility tnd Ca]| lhqh“? ‘
request-response-cycle or pass the call next() to call the nexto Cith r(*,n(?h‘ |
the request is not left hanging. 'mlddlﬁwar} ‘

An express application is created by calling the expregg (- i |
express e.g. app = express(). The app object is used to_p:etf? XDon
operations and, provide services by express. EXPTGSé-liSi‘ﬁ"S'.g
connection on a path or on a specified host and port numbgry, _EH: oy
of the METHOD() functions such as app. get() Where-'aiijl;‘i::n_ys_ing%;
application object and get() is the METHOD funcﬁoﬁ, -Star:t. theﬂp%
response-cycle of the appropriate middleware. e “?“feque% |

To configure middle wares the app. Route() returns an iﬁstan‘c& f K
route, which can be handles by HTTP methods and optionany_.midgl sz.;.]ny,
The app. render() is used to render HTML view files usinga call back,-% i

uses template view engines to render views.

, e mportant parts of Angular Jg,

Describ 3 b
\ 0 17. 3,10 shows the varlou?rparts of Angular J§ 54 follows

Fig:
Ans: T8 [pataBinding ™|

Templates

Routing

AngularJS

Directives

: Controllers ‘l
Modules j .

[wmvw |
Fig. 3.10 Parts of Angular J§

Binding —1tis the automatic synchronization of data between

(i) Data
el and view components. -
(i) Scope — These are objects that refer to the model. They actasa

| glue between controller and view. |
(iii) Controller — These are JavaScript functions bound to a particular

mod
H 0.16. What is Angular JS ? i ol
. Ans. Angular JS is framework manage by Google, it help 'build‘féﬁiinm\; |
sites. Angular JS use to make a smooth web performance. Angular JS isa ol
for building the framework most suited to your application' development if§
fully extensible and works well with other libraries. Every feature can be modi
or replaced to suit your unique development workflow and featur needs,
Angular JS is a JavaScript framework. It can be added to an HTML i
with a <script> tag. Angular JS extends HTML attributes with directives, ol
binds data to HTML with expressions. ;
Angular]S extends HTML with new attributes.AngularJS is pe
single page applications (SPAs).Angular]S is easy to learn. The idea
out very well, and the project is now officially supported by Google. - & :
" AngularJS is a structural framework for dynamic web applications I kw 3 1gBind, ngMode] etc.
you use HTML as your template language and lets you extend HTMLS s)(nm | \ (vii) Templates — These are the rende
express your application components clearly and succinctly. 3 | the controller and model. These can be a singl
dependency injection eliminate much of the code you currently have to write: o Multiple views in one page using partials.

: : &
it all happens within the browser, making it an ideal partner with a1y :
Adam Abo® B

scope. ‘
(iv) Services — Angular]S comes with several built-in services such

as Shttp to make a XMLHttpRequests. These are singleton objects which are
| instantiated only once in app.) ;
(v) Filters — These select a subset of items from an array and returns

| Anew array.
(vi) Directives — Directives are markers on DOM elements such as
eate custom HTML

dlements, attributes, CSS, and more. These can be used to create cuse "~ :
ags that serve as new, custom widgets. AngularJS has built-in directives suc

fectfi

red view with information from

e file (such as index.hml) oT ~

(viii) Routing — Tt is concept of switching Views -
® . m for dividing

technology. It was originally developed by Misko Hevery and f . : : e

HTML is great for declaring static documents, but it falters Whef;e‘t’fjmﬂ § i ﬁpp[icg:) M.Odel l_’iew Whatever ~ MVV 1313 d?:;gnaizﬁconnoller, each
to use it for declaring dynamic views in web-applications. AngY e et j Vi disﬁnlon g dl.ﬁ?FePt parts called o ’0\; im’plemen MvC in the
extend HTML Vocabu]ary for your app[icatign_ The reSU[tiﬂg enviro ! . lraditionalc‘ responsibilities. AngularJS -does N N Model-VICW—
extraordinarily expressive, readable, and quick to develop- lewMg sense, but rather something clos® lyas model view whatever

del). The angular JS team refers it humorous

m .

88 Software Architectures

x) Deép Linking — Deep linking allows You |
application in the URL so that it can be bookmarkeq. The aenc_ode i |
be restored from the URL to the same state. pp],Cationc e ,

(xi) Dependency Injection — Angular)s has g .01, |

injection subsystem that helps the developer to Create, undeli'IL

applications easily. §

(xii) Modules — A module provides g

transition and CSS3 keyframe animation hooks w
directives.

Since ng-* attributes are not valid in HTML Spelr:iﬁca'tio‘n_ b

also be used as a prefix. For example, both ng-app and e nss- dmf!lg‘n

in AngularJs, 58 8-app a

Q.18. Describe the Angular JS directives,

Ans. Angular]S directives allow the developer to Specify ‘
reusable HTML-like elements and attributes that deﬁne'd'ata'vi‘;.jﬁ'di(';ll-l:stn_nI
behaviour of presentation components. Some of the mogt. Commgy
directives are — ety

({) ng-app — This directive starts and AngularJ§ hpp]idéﬁﬁn:
(ii) ng-bind — This directive binds the AngularJS-apﬁlicgﬁbﬁ'dm

ithin CXisting c: cr

o

(i) ng-model — This directive binds the values of Angias
application data to HTML input controls. o,

(v) ng-model-options — Provides tunin g for how modél

done. e
(v) ng-class — Lets class attributes be dynamically loaded.
(vi) ng-controller —

evaluates HTML expressions.

(vii) ng-repeat— This directive repeats HTML elements foreachi®]
in a collection. ' '

: o

(viti) ng-show & ng-hide — Conditionally show or hide an "';?E’ﬁ; ;
depending on the value of a Boolean expression. Show and hide 18 &

by setting the CSS display style. ;

. 3 . - - a

. (ix) ng-switch — Conditionally instantiate one template ot

choices, depending on the value of a selection expression. i

. roulgdl

(X) ng-view — The base directive responsible for‘ handlmgtr;

resolve JSON before rendering templates driven by specified €7 shd,;k"

(xi) ng-if — Basic if statement directive that a”f’,wnt?s 2lse

following element if the conditions are true. When the conditio

Specifies a JavaScript controller class ¥

‘t'ﬁ:? =

';!,‘! is e

bute*

1

I g .

tang, aenpﬂndb! aff
d lg, |

Software Architecture fmp!ememaﬁc,n Techng,
%0gies gg

ve the example of Angular JS with sy, code,
o ing is the simple example of Angular
Ans: Folftr‘tlml ng-app="myNote App"'>
= sm:"htt!):/{a?ax'goog]eapl&com/ajaxllibs/angumjsf
| ,4.8!angular.mm.Js >
</script>

dy>
#bo <)c,liv ng-controlle="myNoteCtr{">

<h2>MyNote</h2>

<p><textarca ng-
i ode1="m€SSage" cols="40" rOWS="10“></textarea></p>

S with Source epge _

igztton ng-click="save()"™>Save</button>
<putton ng-click="clear()">Clear</button>
. </p> . ..
<p>Number of characters left:

</p>
</div>

%% Favorites 1 = &}Suggutedsms':g}\#ebstkeﬁaﬁeq > : foz ‘ '_"-‘,a
i zC\Uig-rs‘:H;n{aﬁ\Dshop\l].hfrys? L_-I a‘ > é,"' Pag!' S*Q!" 7'

90 Software Architectures

0.20. What are the advantages of Angular jg»
Ans. The advantages of Angular JS are as follo'
Ws —

(i):Angular JS provides capability to ;
in a very clean and maintainable way. reate sing), - ; concern of J2EE is the platform specific
"Age

mﬂfy JZEE . " ation gl ;

- : rhe P ent for a application. Th; =it des

(ii) Angular JS provides data binding capabil; i ﬂf::ﬁmc ”w‘r;)::,ts, containers, resource mgng;;: ; g e
H : " 4 . 1 . g ; m s it LIV

gives user a rich and responsive experience. ity to Hryg o | jicatio” coof this cnvironment communicate with a set €S, and databage

[software Architecture Implementat; ‘
JleMentation Tf{ChnoJQ

gies 91

Ironment ncludeg

i - ; of)
(f") Angular JS code is unit testable. Th% e B|cmclr:) ecified. The fig. 3.12 shows the J2EE seri:"'ﬁf iemce-s i
(iv) Angular JS uses dependency injection | ot 07 e J2EE components reside. ¢l and in i
of concerns. and make ygy Gl |ghich il 3L g !
i g S ! 7Y z Lk
(v) Angular JS provides reusable componentg t‘- A % 53 D F |
(vi) With Angular JS, the devel S, FEE g il
: ‘ ’ oper : =}
with short code. PCrS can achiey, @ =

€ e
N i

whi . ﬁ @SJD)‘J‘BU‘HDD iaﬂdr

(vii) In Angular JS, views are pur ' P
. o =)] pure html ;
in JavaScript do the business processing. P and ?Ol_ltmlle[s :
On the top of everything, An ; ; S
! g, Angular JS applicati : :
browsers and smart phones, including androidpand iOOHSSE:iu’1 ;un il
45€d phongg

:
’m’

=

=

[
=)
g

J2EE Server Core

u

A E
- Iy - S1lE
0.21. s R SENS
; 1 Tl:hat are the general features of AngularJs ? 3 _% 7 22gllS . E
ns. e . ey i 3B ==} i 2
_ most lmp'ortant ge.neral features of AngularJS are “all|= VLI
_ '(1) Angular]S is a efficient framework that can create R: |
Applications (RIA). : . C?ea.te Rich nip —

(ii) Angular]S provides develo e
o 5 - pers an options to write cliegt .l
appllcatxo(ns using JavaScript in a clean model vie\ff conf:rc:)llZ‘1?](1%3[\3l(ll(;ﬂ‘;SUi |
1ii) Applications written in An ; & '

¢ gular]S are cross-browser complulf!

AﬂglﬂarIS' automatically handles JavaScript code suitable for éacl-i,gﬁ: :
e (iv) Angular]S is open source, completely free, andusedbythousani B
velopers around the world. It is licensed under the Apache']ic"eﬁéé'\“iersim '

T nim

2
=

B
%
=
-4

Core

2.0.

Tier-1
Server-side

Presentation
Web Container
Java ||
Mail
Gl

J2EE Server

J2EE, ISP, SERVLETS, EJBs, MIDDLEWARE, JDE

~ RMIAND CORBA ETC. ROLE
AT ARCHITECTI

Fig. 3.12 J2EE Server Model

Q.22. What is J2EE ?

p]atff:: eﬁfE :-stands_ 'for Java 2 platform, enterprise edition. The Jew:cIs

- amhitécﬁn q:lrlze ;dltmn qeﬁnes a simple standard that applies 0 uzey

. deﬁneg nd developing .multi—tier server based applications

P sha ?andard grch-:tecture composed of an. @Pplicaﬁon- mOa_nJ'

b oo | osting applications, a compatibility test suite (Vo
¢ implementation in the J2EE specification.

Core

Tier-0
Client-side
Presentation
Client Container

J2ER Server

_ plojom a1e dsr o sodejueapu oy .-.EE..S_Z
o1 dSY ~ (dSV) S50 424G DAY S ggpe -y Y
o R — smOJ[0] ST I dS(JO SaFujunapy, sy

& Sanbuiyaay Wy,
Jo soBmUPAPD 241 24 Joyy o

bmo_o:;uﬂ it

1 qﬂf&
: ap1s daadas SHOMTA 1240 dSI
.,..._ u. ayap auno a4 SAEASIp UM <Y o)OI 1IN BAR] poy

: . n =
| [oM huaﬁmxu s} uf <

o/, U0ISSDIAXD DWOS =0/ Wioy mzss__c
L

\ pasn e 08 -s3e) <v, pue 0> U99M19(UJILIM I8 S9POD BARY ¢ dSI u)
ayy saye 3t : ajdwrexa dSf B smoys g|-¢ By
dsr s S1°¢ B ‘uoisu)xa sl UM paaes are saded 1A 53

<u/> "(Juarpd) 19sMmoiq 341 10 ndyno

&%ﬁw ue 21eJaudd 01 PaINdaxa pue pajiduioy uay

< Qawqmeas] wau=%> | §113[AI3S BAR({ SITL, “IOVR[SURN} JSf € Aq Jojans

9] Eﬁmﬁv eaer ® ojul pafidwos are safed ggr ‘safed

Mgﬂﬁw qap\ 01 JUAIUOD STWIBUAP PPE 0} Pasn e sy

<> 3Bed I <SP | Jop puR 1E)U0D oFed ones 238210 0) pasn o
= <pwad> s n

<>) s8e1 TWLH mwﬁ JdS[se umouy ‘sgey [epads

3 pue s3e} TNLLH JO ISISUO0D SJUSWNIOP dg[
saged qop awweukp pring 01 yoeoidde 1o1sea Ue SIJ0 I ST -saded qapy paunba
2t 21e13u8 0] ‘Sl SSBID BAB(PUB [UIX'QIAN SB [oNnS ‘sa[1J [BUONIPPE SAIMMDA]
pue xapdwiod AI9A ST S}9[AISS UT SUIUWEIZOLJ JUA}UOD uonejuasaid onuis
S| E.om aed qap © JO JULU0D dIWRUAp I} oeaedas 01 Mofe SIS[SeNS QM
arureudp Swmdopaaap 10} uonnjos s,ung st (dSr) saded 1A BAB[SHY

10z 92 “AdDW —
¢ Syd00 £Sojourypay g sa0p mogy ¢ A8ojoutor dSI *:

u u&
- (s10z 92q ‘T10¢ 2ung 47D Y) ¥ ¢ Hom @_ms
L asrsoop woyy ¢ Gojouyon (gsy) saSvg 4ansas vavf S 1M " 4239
; ; mdino Ny s1ersuas ey Sey Woysnd 10 ﬂcmnoﬂemoho_ﬁ%
i Bnoxgy s1m230 s8e) T Jo uonelauad onwreak(y “oFed dSI o W s 104
21ejdusa) oness se papniour aq Kews s3ey TNX A ‘yone1oudd d\mx _.,Qw
SIUBUMIOD TY J0 uoneasd poddns saop uoneory1oads dsf oW A
ﬁN_SN aunyp ‘4 497

¢ @ojouyaay gor Suisn sadod TIWX anad?

1
“uor Buikonsap PU° mcm_% 105
mﬁdM_MwE B BUIpLO] ‘Wone iduwios ‘uonejsuen Ged 21° m_u\no&_._m_\:_m ol
ac,mﬁmuMﬁB ANUBUAD 30 yusweFeuews pue UONEID ol \m ._ﬁ_mh..

- AEf plepups ¢ 51 4S["safey 1oA19G BAE[10§ spuel

w0

Y5y

26

S5iboyoy
“oRelswEIduy sumpeyyosy 21EMYOS

IINX PHY DL Y 0N EAFO[OULDN) JRULIOL BIBP THIEO[0)
duasottl FAUREDIDN JOL AL PUR [1BUI-D 0] B530D1 ansunuaIdosd Jof Ay
! carfo(ouyaal Auidussoun sy potyjaw amowad Joy s(oa0ad O 1/1AY A
w AEZ0 OUY UL PAPN[AUL AuopEUNIWo) oy} jo apduimxa uy uadduy
) e 0) SsIuBydAL yopeaunwwod speudosddy oyy opiaoad o) paou
v___.:__::cu auf) ‘2IQJOIALL, " PHOM PADGLNSID ST U1 IDLIO GORI ()im 0JBIUNLIWIOD
H___ ﬁ.uu: m_:a::QE:D ImDnERjul ﬂmﬂ:o_,_:;uu?n: ,_uo_:m:.:m:u B o
Jonuyap oy 8! AHZL JO 92056 2y |, — SAAO[OUIAY, UoH)RIIUN UG Y
_mu_u_aum Fuieu oy} $80998 0) S[v ([CINT) PIELI0)U[K1010a31(] Funuep sAvf o)
mc_m_s ‘dwexa 104 'S[dV JO 195 pIepur)s & eiA sjuauodurod al) o) 9)qissanoe
5 JEL) SUONDUNJ DI SADIAIIS A |, — $FO[OUYDID], DIAIIG PUE §IDIAIIG

spauodmo) qaze pIs S

qu
ol
m_ﬁ_:u_._

o m | ;
: ; uLiopyelg ! ursogjelq ; agd
@ <l anee m warr | S| ano
H : W A SR
: RIARS : uonediddy
@ <l [e | <] ey
j .m dojyysaq
ard dsr “H_”_.H_%
@ ara asr g
¥ «
———] Turepue)) grq 19A13S qapy M 13sm01g
. i
:»w._ﬁm_.wraE..Ec_ 2130y ssoursng U0I)BIUISIL g UOLIE)UIsILY
,g%. me__m SN 2pis-1AL0g apis-1oID
11ed y
2 l1dde os1xdsapan we ur ofpuey Ajjensn Koy 21501 21 yim Suoje s1oUIRIU0D
oadsay iy : ;

B0y b " ur sjusuodwioo uonendde oy Jo maiATaA0 U smoys 41°¢ ‘FIg
Pipoug Pateredas e ur paynosxo st jusuodwon Jo 2d£) yoeg ‘woddns jsnw
T HAZS © 1Ry syusuodwos uonedifdde jo sadA) anoj sy se (gry) sueaq
Wiy ‘e_ﬂ_ Mu, eAef asudiajug pue (sdg[/s101a108) sa8ed 1ontogeae]
13z 1a0jouyaay PU® 19[A108 991ddy “uaijo uoneorjdde oy sautjap
é JUSWIUOIIAUS dWInUNL FHZ[YL "Walsks Suruonouny
€ Wioj 0} joesdjul jey) juswAodep pue ‘uonisinboe
‘uononpouid yuspuadopus jo sjiun Areuq e sjuauodwod
auemijog - so1Sojouyssy juauoduwo))
“€1°¢ 31y ut umoys se suoNEal193ds
HAZL 9Y) uryym poziuSooal 9¢ UBd SEAJE 33U
‘Ma1A Jo jurod [eoidojouyda) aund & WOl SUp
¢ ASopoudar T STIVYM ET°0

SBINJOBJIYIIY BIBMIOS Z6

N%En*.__um..m._fd_.:
32 _odun @ aef,, = oaFengue| aSed@)o,s — uEmem

-safepoed du0 UeY) d10W Modun o Pasn aq
fiue puaIX® O} JUBA S UM IS ST Inquyyg “
m ..wmﬁobz.mmﬁuan?r, =SpuslXa (q)

W8 <. eael, = ofen3ue| aSed@)os — u_aaﬁm
i ; ‘ofenSuey eae[ATuo suoddns 0TI 90
[eaR(24} Swsn ST a8ed ay} ey JOAIIS o sjjo s1y ,ﬁ
«eAel, =o8en3ue (e)

/ - A.x..,mﬁ&a.u

(yeumnod 2L PP

JSf uaun) -ggengoe

~2q Lew ainqupe oy
< Sk, xgord PpqUEE/SPR,, =1 QUISE) @)%> — djdwexy
*(s5'1 UMO IO PIVLISP 0} SN SMOTT® s3e) wojsno)
soFed ggf-om W sSe) WOISNO S SPN[OUT O) Pasn St g#73v1 (9) .
<Y dsl1apeaty/,, =91 Spnjoul @ %> — Sjdwexy
a8ed g§[o) W 3[Y € IPN[OW 0} Pasn st-aprzoul (q)
<9%.2ael, = s3endue| ofed @)og> — ordwexy
“}t Jnoqe nonemIou ay apracld o) pasn st 23pd (®)
— 9q ABW SATOP SI3YM
<94, SN[BA,, = NQUIIE SANOIIP @%>
— ST 2AT2RI1P
dS{ 30 XeAS a1 "<t pue @4 A[oumen ‘sioyuTap [eroads SISl PAE
3Ie saAnoa1y(] “ssodind 1ery 1oy 9An0aIIp B 95N URD 2 ‘JS[N0 Ot mume@ﬁ
10 S38SE[D BAR[prepuels-nOu/pIepue)s swmos odun 0] juem M JI QEEM £
104 "09YE: 34 0} p3U HOE 2WOS Je JaUKEINOD Y [[2) SUONINISHE P ;
OUEN0D 4S{ 211 0) suononysm 2y axe saaan(] — s2au2ad
; : ’ 3 21
; . ‘s8e) woysno pue ‘suonoe prepuels mnmwm_\
SRpduos ‘suonerejoap ‘saA10211p Jo poasodmoo st 95ed dSIV i
£ “ A X
G:UN ST0z Wﬂ.&ﬁ \mmu.mu NNM.\.\.Q NE_N:QQ«EQU thuuam E.uum ,
| 10 i ¢ ;
Eha.m

dx?

(r10z aunp 407
dSf 1 pasn juawags Bunduos a0 s8m fo sady guaaffip ¥

(1P) 10 w70
Top wt gop fo (w2212 10) usuodumos snorwa 211 uppydxl ‘62

-goue)su! Hmuma
jojros B

®

9 Aq pay ;
ast Mﬂw WUHHHMMQ vawEUm oﬂp PuUs o mmﬁmovﬂv up nm_ je .‘.QUCN”—mE_
p 9 Saproap 12UWBNI0D a[AT2S B m:.__%e.amuQ

-got¥
Jp03d 11O yed se J9uIEIU0d qap a4, ‘K[oAnoadsar safeys uonepdwon pue
;i . HE]!

’ 1} oy} Ut pafIdwiod pue pajerausd uaaq sey jeys jojasas a1} SayBnUE)SUL

mmcw..
=”“ Meo_ 10U1eU0D JS[S, ~ HOpNBIUY pun SutppoT ().
P

. ‘J[nefap £q 9po2 221n08 vAR[
| piaad oy} paedSIp SIDUIBIUOI4SOW ‘A[[eouar) pajeIousd s1 3]l SSE[o o) Io)JE
Msmm:n_% 10§ 31 UIE}21 10 3p03 ayy PIEOSIp 19U)1a 03 apIoap Ued Jaure)uod Aif],
.%.o 5 (52[9) 214q eA®[OUI)T SLI9AUOD pue 13[Al1as Suipuodsariod af) 10] 9p02
08 BAE[S SA[1WOD IDUIEIN0 dSf Y T —28mis uopvpduo) (1)

: "awn) 3SI1J Y} J0J PIATIDAI SI JS[21 I0] Isonbar € uaym o oy}
10 gSf oy Suikojdap jo awny a1 Je 194312 aoe[d 23e) UED gS[JO TONE[SUEY
gL ‘WAL W £q panoaxe aq UEd YOIgM IPOO BAB[JO 2I0W SEY JBY} SUO
00p0d TINX/ TIALLH J© SunsIsuod A[Jo1(o JUSWINIOP € ITIATOD 0] ST TOIB[Suel]
s5ed J0 241109(Q0 ST "IVJAIIS "1 9POD BAE[JUS[RAINDS U OJUI JUSWNIOP
JS[5T SeIB[SURI} JUIBIUOD QM 2Y[— woyvsuvi] 23vg (1)

7= SMO[[O] Se 2Je 9[040 91T JS[JO safels Jofew oy SUp

Groz ‘sroz aung ‘AdDW - T
: 280d J§ apduils Sunvaao 1of sdzis ssnasyq "87°0
. “BJEp JMHBUAD JO SJUNOWE [[EWS JO UONIASUI 3] AQ A[[BUISIEUI
Ijoueq £(uo jey) safed ALY juowSne 0] 2[qISEI] S1 JS["TOIJBUIIOTUI
AmEuAp WEIU0-10LR) TIALLH 1e[n3oy — TALLH JUDIS Sadsy (1)

i e “uvumnﬁomﬁ Suronid ‘s3o[e1eo ‘535EqEIED NI SOOINOSAI IPIS
A5 §53008 jounes jdirogeAr) 9UOT[O S} WO SUNI)1 90wIs ‘puy dLIDGEAR[
U d[qefieAr jou SI mep HoIssiuqns wioj pue JLIH ‘S90jooo jo uondaoxa
wwca_g JUSWUOIIATS § w‘nwmo 3T U0 Paseq ST TONRIIOYUI JTEUAD U} SISGA
%wﬁ_m 950 Auo soptrey.jng A[Iqedeo [njosn € SI SIY] JUSIP SYL U -

"eufp AL [ore10ua8 ued ydiogeaer —1dLOSVADL SA JSL (A1)}
= S..QE 311 PUE ‘Su010aUU0D ASEEIEP BUW “BIED WLIOJ AN JBT! swerSead
. Emﬁou suotsnyour ajdurms 10 popudjul A[uo AJ[eal SI ISS ‘sapisag “ped
N %.EE S1e1auag 03 weidoxd oyeredas B JO PEISUL SJOJAIIS JO asn o) SEIRIE
iy .\Eosun SLASr -o8ed qapy ones e ojur s2091d pauyap-A[ruIs)xa Surpnjour

: [0utasy ¢ g ISS — (ISS) sapnjou] apis-124428 "SA JSr (1))

Teyy E&EB U0 o) woxy joo[ay) sayeredas os[e I TANLH oy} jeroung

IS upuud woniz v sAey 03 UBYl TALLH te[nSal SILIM 0] ISISED

ling -
0 19a108 ¢ o Te[IWIS SI S — SJ2JAL2S 2ung Sa JSr (1)

cgeu:f_ "SIAISS QI paseq
"0l pue sweysAs Suneiodo 1ay10 0} d[qeod styp (q)

3

_sE G . 950 0} I31se3 pue [Niramod

0y o_gm ? 10Ja1a1)) 4y yum 9sed Ay st se sSenSue| og123ds-gIA [0

NSIA jou ‘eAael ul udayum st jaed Snueukp ayg, (®) -

gt SRy

S8INjosliyaly sremyos pg

pzijerul pue uolenue;sur ‘Buipeo| K[owreu ‘suonerado Qany; _Eobum

%“Y \\ 'M b

.omeu ATe1qT| 38} O} 10} SWEU Setfe sp yy,

d o5 0) Pasn St PUE UIEans 1IN0 30 10530 up <) U3 3Y) 0) Jndyno

<xgaidder>,, = xgaid (q) fue P ° (p)
d 2AE[aI>,, = lIn :
' reiqy 501 910 3O Wed PAREIRE>, =1 () | .
o _ o1e 32) 9A0QE Y3 10§ SOINQIIYE PO 109(q0 UOISS3S AL LH o) Stuosoudor uopssag (5 o
t9e oy : *25u0dsYIR[AIISANY Jo ssefaqns sy mmzo._%m.._ MMW

_ yyyoud <1 Are1qry 3ei,, =l qusey g,
0.

q13ey

_ 51 s3w) oSN 10§ Xe)uks Ay, — S8 wopsn) (14)
nou JNoYIM oSed JuIOIP S 01 193PaL [[ia sigp

<] <OUPIR[IT>,, =98ed premIoy:dsfs Y

premiog (q)

Anxu :Aﬁmu.ﬂﬂmmﬂvuu
"1sanbai oy

guo[e pAVIWGNS BJEP 9T} 9ASLNII 0) SqeLIeA sty as(y -
gns & SI pue jsanbaz sjuarpo oy mEomu&up._amawmwomwoﬁﬂaumaﬁm
_ o1e s1opdLIds JS[AU} 0} 9[qe[iea. Sa[qeLey -
: LIBA "poyaw ()oo
sy @ 9p09 253 seoed osurdug s “s1Ppduos ggr oy w Mwsﬁww%_;
moue AU PAQUI 20 9 "< HHAL SPUS PUE 94> Uit uidaq stapduos sy o
<% 9p0a 1on3duos o.év
seaae — SMO[[0] se sI s3opdLds Jo xejuks sy -ofed
{5l 2 W STUSW3}ElS ‘BAB(QIOUI IO JUO 21 s1opdudg — spaprdiog (111)

s
10 ss8[9

1asmo1q ST}

; Kl
op0SUI §1 9[TJ PAPU[OT! AYIJO ndino ‘st Jey [, “oum-un e ayy m_m.w

ds[o ot p .
pemoads oy pUeONIEUAD ST 3]1 JO UOISN[ouI SIYY

ap U papajout ST 2[
< <PUIRUS[>,, = 38ed apnpourdsh> Suoyp1v2(dSf 9T°E “Sid

opnpour (e) s

— SI suoRoe 1| S — : _ ‘..mn.:sev
(3 = %4> MOU ST =
pIepuEIs ¢S BUAO[[0] 3 10) XEYUAS OUL — HOHDY PIOPUDIS (@) N G M“”“”whw " o
"PHOM O[[PH AB[dSIP [[i# 2pod SIL <Apog> k-
<> 1

Agon@~HOB O:mumd = %>

— ojdwexa.10{

<% Jup AUV, = %>

. — SMO[[0J Se ST suoTssaIdxa dSI
a1, ‘payessusf 105 jer o8ed A LH o M paSIour aq UED UOISS

'dS[1 suonere[oap Sursn Jo ojdwexa ue smoys 91°¢ i
| : <% *(0°7) 9[PIO MU = & 3[2TD{ %>
j0 YequAs - <0 ‘Z 9[qnop K XUl {%>
qdv® | : <% 0= Dt %>

0 5 ”
MSM« MMMMH Em.w 30[eA & PIOLA Aoanp Jey) suoissaidxa 19710 10 sojqeLres BALY ; — so[dumexa UoneIe[d3p AWOS AL ALK
[PA 2} BuIssa0oe Jo sweawr are suoissaxdxy — suossALAXH (a1) - <%
<2198/ 918y Sa[qeLIeA 23 [[B a1e[o2(//
<% i%>
— SMO[[0J S®

i m_ mﬂo.:.m s
} 9D F;
RS 123D Bunyew jo xeyuss oy, -oSed JSr A Wl suonere[oop Aue e

M UM © 7
UM “pasn aq pnoys suoneie[oa(q — SUOUDLA)

<>
<PY><Vp [+=%> <p¥>

<py/> 1oqunN <P
<>

<04, dslaowa,, = 9510

oy «ND,, =uoIssos eael,, =aFensue| a5ed®@%

w_,ﬁ_oEB ‘ofed -wesBoxd oy w suondaoxs Aq pAPUEY
3y ut suondooxa pafpueyun At [PUEY o) pasn SISIYL

. dsl1o1ra,, = 98ed10112 (p)

«, — a[dwexg

<%

| } G+ luslip = [yur)io} ;
f %> Ty ~/0.PNy,, —uojssos eAel —afengue] oSed@)%> — dldwexd
_ o B . et o5ed JSi oW O a[qe[iEAt
ﬂ <=0 ISSag < 10U 2SI i
= u_m:_s"m N 1 aneA siyy uoypy onn St on[eA SI aqegep Ad

_onn,, = 0ISSIS (@

8 mw_mo.m
o _.Eow_ uo
8JiLjoLy al
sa njodyaly ajemyos 96

o anquAy1os 4 BT POSUUEL S1 3111S uojsse
- o ANEAV? S uayo ST EJEP P9I WO} ol sajpuey EEQ..SE:
-gnofaqo ¥ — juawnaop TLH Ue s3jeiousg ey ocam
pue HEM.%EH Jouruerdord oy 10J MO([0) 0 notgp 2 E.o
owﬂuc_ﬂﬂwo_é_ [oISSas B :wﬂ_o.:ﬁ MOTJ JOIU0O ay |, Q_C h|

.mhu:m_mv_u
o ssomnupi501d JO SUIAIU0D 3 ojeredas 03 MOIP SI (1)
TNLH wm 1> pup] 1) PIOAT 01 JINOLBIP a10w 2q UeD)t swea3oud jeinpyo,
. u:p.m. " 1oA3 10 BWAYDS JUOS 03 Surpioaoe pijea SLA[nsax oy yey
1od wu;:now_._wa apduiod ou 31e 2197, "JUAWNo0p TINLH 23e1dwos ¢ Buw 10y
MMHMH“ "Em.ubm. mdmo ue 0} uapuMm aIe TN LH [etuxa Jo maﬂoem,m"_u n.o._,
250 _MO{ [j0S ST SHUSWNI0P TINLH JO uononnsuod orweudpayy, (r)
[oA9] — SMOJ|O] SE 9IB JI[AIDS JO SATRIUBADESI(] “Sup

12]a4as fo SaSDIUDAPDSIP Y] 1LY LD

mmi

sy uaamiaq U
S19[A138 uaIafft

*2)9 ‘s3130[0uy0?) asudIsjug eae(1y
@a mo:w_muﬁ ‘samiqedes SUDEOMIST AJIND9S JUIISYUL “UOLIUSLIO-102(go
se %:m.dmm:mcﬂ Smmaressord AR 971 JO S2INJEIJ POOS 21 [[B e Koy
‘swex§oid eaef o1j193ds 210U NG SUIIOW S1B SIDJAISS 9SNELISY ()

“kojdap 01 jdumis pue o]qess aymb A[rensn axe Aoty ‘(JouTeiod
“31) JUSWITOIATS P3[JOTUOD B SPISUT ANIIXS §19]A10s dsnedog (1)
“TOAIDS Qap /ISUIEITO JAJAISS ST} UO SPUBTIOP AIOWISW JT) $aINPal
osje pue ‘1ajsej Suissaooid [[eIoA0 a1 sayew SI], ‘s1sanbar Judf[d JuaIsfIp
30 0} S30UESUI PRaIl} 3831 SIRIO[[R PUB “90UB)SUI J2|AISS SUIES Y1 JO speaIy]
MU $318310 J1 “Pe2]SU] "SAOUBISTI 12]AIZS MAT 3781 10U S0P I9TIEIU0D 1014128
O 19]AIes Jwes 1) 10§ S)sanbal PuSS SIUSID SIOW J] -gysanbar §Jualld mMM
| Burssa001d 1oy jofAas st 3o peaIy) & SUISSE pue KI0Waw S UT19[AI98 ay %a%
J9UTIU0 137105 21 J3[A135 & J0 UONNOAXS Ay} J0j 15eNbAI © S9AI0 JOUIES
1B[AI3S M) IaAdTAYM “sI Jey [, ‘papEAIINW 2Ie SIO[AIDS)
— SMO[[0] SB oIe 9]AIAS JO soFeueApY .mt.w
gaj3s Jo saSmunapn oyp MM "EE
«5osequI?P
_u eAl[o
10010 1 0
-pAlf

- mMEmEEouE TN Pue sjax00s oty yBnoar arempyos 2200 1
19de qum areonmunmos yes 1] IO[AISS © 0} 2|qE[IEAR 51 S1EIAN sse

0
30 Apenonouny 119 oW ‘Kjjeury -aunyorpw soAzes © UO $90MOSAT oy}

4 SIOmImsargogag e qpuyL
‘ i $2010JU3 1oATRS o Lnoos eagf Ul P
! W Uahum op R U3 uo 123euew A 555 12

— -
ou st

1S Eoﬁﬁu&u@ﬁ-ﬁb&ﬂma ale S)o[AIaS ‘puo

Wap

! P Toea .."u.:udmﬂ— o

‘ 1 $83001d Se1Rd: axnbal)
d. M ® Jo 3eds o teredas e oje01d 0) Al

N
p

“sTiy - B 31 Ul unt jojateg 1519 oo !
ﬂwmw MDU LHES Uostreduigy ut mmmgﬁm\w—v—w Aupw Dﬁm.wo._a uu_?_um
Lmacwz.w‘“m- .NMQN unp ..\— a5 .gv

2N 210U 1 iy Y3 11015 pang fo soanpwaf 243 WiV

dxiq TE 0
' 66 mm__mo_oc
Yoa | :o.ameEmEE__ umoajiyosy a1emMlyos

UMOYS STSIY L, “TINT uEmﬂH MMWM
SAS[SEAIIYM “eney opisu T 1 o
SI9JA19S ‘spiom 1ayo U 's3e) T LY
U39M39q U apod eAey aym ‘papaau
ToAQIaYM pue ‘s3e; TNLH 211m
_ tED 9M "2p00 AR TRt apisur AE.rE
s 510 pue 90D BAT Xo[du100 231 0} AeY 101 0 am ‘g oy uy pojasas
m___,_E&muhS oy Bu1pod wey) Jo[durs aq o} swoas s = urpoy) “suy

[ajdas puv dSI woag2q 25uz.a/fip jvndosuod ays 51 oy 1cg

,\ puv §19]A428 UIIM)2q
. 4 .M%a Es&uzab YL LIS By
JNPEETS? -

‘porjow
(Joxsap S S[TEO ISUIEIUOD © ‘PAAOWIOI 3q 0} ST 19]AI0S E USTA “aseqd o[oko

4 TORONSAp Y} 0} vnommobou 03 poyzaul ()A01Sap a1 saulyep 30ejIa3uI
pjAIas oY) 910H “ISUTEJUOD) WO JOJAISS) JO [EAOWIAI AY sjuosaidar 3
aseyd HONONSIP Y ST S[OAI-01] 19]AISS 9} J0 Iseyd [euly pue pay 7],

- L "1senbai jey) 03 asuodsar ay; ojeIouad o)
aqisuodsar st j1 ‘Bay [, Jsanbai oy 19d Se 20U0 PAYOAUT SI JO[AIIS B JO pomIem
(Jpatssas oy, pogour ()ao1AIas oy 03 aseyd S0IAIS A1) SIYOTEW 0BJIAIT
JjALas ot "Pakonsap st J9]AlIas 2y [pun sjsanbar gm Suofe suoyoelsymy e
Suasaidar jy aseyd 2o7AI9S a1y ST 9[9A0-0JT] 19AIRS © JO asend prooss o]

"sysenbor Aue Suroiates o3 Joud poau (jur
QUIBJUOD B TN\ "2[0K9-9JT] 19]ALas B Jo aseqd
i T goyeu o3 poyoun (iul 5y SOULIp 991Ul ST I Sj2[AIss [[e Aq
o %&_SE_ 94 ISNW 0BJISYUT J9[AISS 19[ATS XeAR[9] "SIsanbal o0IAI3s 0}
w_sw& o m..ﬁ_sgh Aew 1o]A108 a7} ‘S90IN0SAI JO noumN:mEE pue uonea1o 3}

~ 7310400517 yo1A10s BTy O oseyd-jsITy ot ST UOKEZIERIN YL
P a1y @ A . ‘aononnsap
g g Honezieniur Kjowen oy oseyd-0a11p € MO[[0) SIO[AI3S AL

Ay - PIS-10A108 Surr

VYBisy BYS 10J Jodo[aAap B 0] SqB[IBAE swsIugyaUL mér %
? ooy i S9p1A0Id pue uy uni §13]AI9S 1EY} JUSWUOIIAUS papeaIiy]
: _._U_«.—}w D_Ohonv.w: A1) MO]]0] S12]AIRS ~ JoJAIaS JO umu,ﬂ\r.v T
o :MM_PBW o £q pojersuss Ajpeonueudp uonewLoyul A WO asuodsar
553.2 dearn T9AIS o) ‘raAtes oy 0} [ONUOD SWINR] JojAIS AT} UM
mw ! Ewhuﬂ Passed s100(q0 1ojeuresed uo spoyjaw Sul[[ed Aq um:w%w ﬁm.q ._w %ﬁﬂ
HMMM 4 ks Honeuwoyur aonpoid pue 1sonbau 2y Jnoqe uon 1

i SOAI909X
W POy WVJAIS 2y ur opo)) -g1sanba1 dLLH urer9d saal
Uy ;

M u 19AIDS
& g pd v "paitess st JoaT
U UB}SuI s1yy) wo poypes st poyaLy Je[adi i

an mﬂw::ﬁm—: L frEo pofiEenly 51 10]A19S ¥ SUF

.%Q ‘ AJIS (OAN © JBL) SSEJO BAE[B Hmz.m
NNQN AUNp ¢
I AdDY) >
991045 fo 236> afiy uw)dxg ¢ 1914428 STIVUHM 950
sainoanyaly e/emyos 86

"1 SYoam 31 9a1a105 & speoy 1
Oezirenroy o

pajagul u9aq SeY ‘W ug n.:omﬁ u@fﬁomaﬂ

woy .
- .Etum%wﬂw@%x: Syt WOJ) POURD EART (1991135 o) Jusayg, = oﬂ a |
Kaeuts 13| %q popIAD 1d SB[1o1a105d1] SPUAIX SSEYD 10]AIs ey §
opauas JnQ NS A4 ﬁ 0
{
¢(_powow ()konsap uf,,Jupuldno wasAs
“ \
()Aomsap proa orqud
: {
(_pomout ()19D0p UL, Juputidjnowaysks ,
} |
“(esuodsar asuodsay |
. A |
JoraegdnH “1sonbal 1sanbayie[alaSdnH)991AIas proa drqnd |
{
(popom (Jur UL, Juputidino waysis
¥
- (Onut proa orgnd
}
1ATegdiy SPUSYX RAISIAPIQ Sse[d drqnd w
m ¢ dnyyejates xeael poduwr ,,
w ¢ . 191A1es xeAe(j1oduwr
¢ -oreael podurt |
— sMO[0J Se ST a]duexa JO[AIRS V : |
()komsop pIoA
o ‘(asuodsal asuods?d |

PjAIagdny] 9sonbar jsanbayiajazogdny) 901AI0S PIOA orqnd
(ymn proa onjand w,

1a[AJagoLIuan) spuoixa 1o[AIaSdNH SB[1oeNSqE o:pzm

— J9]AI0S BAR[B JO UOPIUGAP PIE

.mu—O—EOM

E”%e.g.ag Buizrjentuy spogew saryy sey 3y “sisnbat dLL

MM JWmuu Aeayoads SI PUe 30BJI)UT 19]ATSS U} m«:oauaﬁ_ EEM ot

Yo zEum&f Rlalagdny sig puorxe jey) sseO BAE(© i 5 1o 5P

B,wkum UMO 100 3)11m 0y Juem om uay Ay A9l Atos xeAs! puaX ;

Wwamy Ms_.ep S12dojarap woneondde qap, ooeperut 121 aﬂﬁ&
1wt pue s)sanha; dLIH 991A105 4oy m $5S58[0 eaef 918 519]

@SN aunp r_mﬁmu.s - }

21dutnxa iy uldxy ; vany w s3ajadds MM o

0L seipgy
ST _._n..__ﬁﬁ.._.w:,z..:_n:.u_h ainjos)Iyoly 9IEMYOS

mol 0

E__u g

m.um.a.m. i
s |

m‘n! .

3uss°0

abo1 dLLH 2% PaVEINUI J2U3 (1984019 qap “a'r) yuatpo oy 03 spuag uayy 1
459 «;gpssall osuodsar d LLH Ue OJULIB[AISS o1y £q 193(qo umco%ﬁzaaumar HA
il palols UONBWLIOFUL 34} SIBWIO) I9AKS ogy (a)) !

A9AI3S 3Y) 0] [o13u0d swinge; 1
sy poUSIUL S€4 poyIaw 19[AISS A1) UAY M *2dK1jucnos Juawingop ua
oy 19 peay d.LLH dWos yim Suofe juswnaop TALLH 21us ue
prjous A[Ie21d4) POUIOLE 121195 241 AQ 122040 13139 a1 ws prors woyeuoguy
W O passed $102(q0 um:oﬁwwo%u_iomnzm Pur 153nbay1(asagdn gy
sy 00 SPOTAW Burpreo A[[ea1d&} ‘samnoaxs potiow j1a13s oy, (1n)

4sonba1 ayy 03 A[dox ur (Jasmoiq qap “o'1) Juaro o) puas [im

o v

19108 91 18T oFessow asuodsar JLLH 243 Ul 9pNJoul 0] SIYSIM JojAIDS ey

gopeuiIoyul p10231 0} pasn 3q ued 303[q0 puoIIs Y “IoAIdS 2y Aq paatadar
sdpssour 1sanbar L LH U3 Ul pAUTEIUOD UONEULIOJUI 31) SS300E 0] 19[AIS a1} Aq
pas 3 UED 1) SPOTIW sopraoad 302(qo 1811y 2y, ToAIas 9y £q pajuatuajdur
s oIgA IV 19[AIS BABL 9] JO wed se pauljop ale s20BIA)W 95y} JO
qog ‘a0eIapuT asuodsayo[aragdpy ot Sunuowo[duit 103[qo ue pue ooepa)ur
isonbayieratesdnyg o3 Sunuowapdun j0a(qo ue — pogaw oy o passed
ae sijpmered oM, J9JAIOS JBY) UO pOYjeW B S[[Eo pue jsenbar oy ojpueq
PInoYs J9[AIAS YOTYM T 91} WO SaulIe)ap uay) JaAas o], (1)

12]042S JO 243021121 Q€ ‘S

- 12lqQ asuodsay
asuodsayy pagrpo JLLH
PIAmg 194108 Jasmolg
PM L
alqo jsanbay
asuodsayy/ysonbay dLLH
Rlizyg A "10]A10s ® Aq pIJpuey 2q p[noys Jeq jsonbar e sB
0 pamgyy Sw3aq Juouoduwos yred a1 yorgm 10] TN AUE 0} jsanbal Aue jEaN)

ot %aeo 99 31w 104195 © ‘ojdwexe 104 19[A10s & Aq pAIPURY 24 skis

pzaa_.pu“ TP “Isonbor oy jo TRy oy U0 paseq ‘SAUNIRAAP IS I SIS
138 € £q poataoa st aFessomm sonbos g1 LH U2 19IM ()

By <_..§ﬁf SMOT]0] se sojerado A[jerousd jsanba1 19[A19S € Surjpuey 19AI2S

Sam e w@ PUE 1aA10s U00M}a(q UONORIIUI A} SMOYS g1°¢ ‘SLI SUF
tay W) 92)0Las fO 21m122)14240 I} ssuasid €0
zm :U.E a1 .\n:mouﬁm _umuuogmﬁ joua
”_Nfg mwm,s 2005 [euonppe e i yomgA INGIYIF oY SIS IC
JEL 10y dApy #8590 51 91 w05 oAy oM SE ‘OS[V -uonoeIa! SHMU i
Esmoa o_ .:.u dARY sojnque ureneo jey) SuINSSE 104 I S
B reajo seM[e jou s1 MO[j-01)U0D TOISSS o1 90UIG "A[qEISUINA =

sauoByaLY 81EMHOS 00}

102 Software Architectures

GenericServlet defines the other two methods, namely init() and ;
HttpServlet inherits these from GenericServlet and passeg them aom:g:
OrderServlet. The OrderServlet has some code written in the Eﬁ_cz lo b
servlet container would call them as and when it required, 10ds,)

0.37. How does a serviet communicate with a JSP page » Ho]
a scriptlet to initialilze a newly instantiated bean ? (R.Gp v, .N__Smi_g
Ans. When a servlet JSP communication is happening, it s :o:._iwsg
forwarding the request to a JSP from a servlet. There may be a negg e ab
a string value or an object itself. !
Following are the steps in servlet JSP communication — .
(i) Servlet instantiates a bean and initializes it.
(i) The bean is then placed into the request.
(iif) The call is then forwarded to the JSP page, usingrequest dispatcte;
Following is a servlet and JSP source code example to perform mmé
JSP communication.
public class ServletToJSP extends HttpServlet

Uy
Sy

{ . : .
public void doGet (HttpServletRequest request, HttpServletRespons:
response) throws ServletException, IOExceptin
(:
//Communicating a simple string message
String miessage ="Example source code of Servlet to 1%
Communication";” i
request.setAttribute("message", message); _
//Communicating a vector object
Vector vecobj = new Vector(); T e
vecobj.add("Servlet to JSP communicating an object");
request.setAttribute("vecBean", vecobj); i
/{Servlet JSP communication .
R : A - _mﬂﬂozmmi
equestDispatcher reqDispatcher mﬁma.? ol
getServletContent(). mm%nn:nme_%mawmz P
Javapapers >
regDispatcher.forward(request, response);
}
}
Example JSP source code : (Javapapers.JSP)
<html>
<body>

<%

A

Software Architecture Implementation Technolog;
gles 103

message = (String) request.getAttribyge ("m

E: ﬁmw __.
> i printin("Serviet communicated message o JSp. e
Vector vecobj = (Vector) request.getAttribute ﬁ__énwamu__vwm%

oc%:::i._mo?_ﬂ to ISP communication of ap obje

String

ot +
vecob. get(0));
%~
<%%body”
<l ..+ 1ize a Newly Instantiated Bea 3 ;

- tlet 10 Initialize 2 y . an - A JSP:useBean action
Scrip Jlly have a body. If the body is specified, its contents will be
qay OPUOPE ked when the specified Bean is instantiated. Generalty, the
qutormat! atain Scriptlet or JSP:setProperty tags to initialize the newly
e ough you are not restricted to using those alone.

- antiated bean, alth icted |
" The following example shows the bean initialized to the current daiz when

- instantiated. .)
itis EM_N@ — "= ava.text. DateFormat.getDatelnstance().format(aew.java.
v

util.Date())%>
<, — Scriptlets calling bean Setter methods go here ...%>"

38. Explain how Java servlets perform session handling.

R (R.GRY,, Dec. 2016)
B Or

How Java servlets perform session handling ? (R.GRV, June 2017)

Ans. A session is a collection of HTTP requests shared between a client

minutes by default. The session is destroyed after expiring its lfetime and all
its resources are returned back to the servlet engine. In session tracking, We
gather the detailed information from the Web pages and maz,w user generated
%.uﬁmzon. The server side applications keep some stale 0 £ session
Mamtain a dialouge with the client. The most common mxm._%ﬁ ° momm the
E:&.Em is shopping cart application. In this application, 2 client mnnﬂmm@m .
¥IVer many times using the same browser and Vvisits geveral Web paget

e, Hb _..Em
M.Mmﬂmmn the client buy some items offered for sale at Eoﬂgmmmw Mmmoﬁ and
3 1 1 1 ¢
P _F wmmor transaction is being served by 2 stateless serv ¢ it would be

.. . T
Impg, 10 identification from the client’s side 0B amn: %ﬁ. requests from
E%owm&ﬁ to maintain a filled mFovﬁm: g cart over m.o<m_.m_ i i |
:msw,ME. If the user visits a Web page multiple :.n.ﬁmhu stateless DAY

0 be added to the shopping cart in each visit, the ven Wiitl"s

:.3.7 ; ; fore, €
M_ws_a_a_mz not relate each visit to the same sessio: Qwﬂm asolubot” "
"arg am,ﬂ:msmmnmo: data to persistent storage would nw the user _WM __w,
"lateq ID Crefore, session tracking involves identifyng py usiog the sa!

nu

H on
mbers and tying the requests 0 their sesst

and a Web server over a period of time. A session lifetime is set to thirty

formation and -

f

-

‘f‘,

£
J’:J;",
.F'!‘!".-

i

e

i

104 Software Architectures

number. Cookies of URL are E.m Jﬂ_nm_ mechanisms for Session o
accordance with the servlet mwno&omno:u the servlet oosﬁiﬁ inthe nz__”.
server implements session tracking .&.qo:m_._ HTTP session objecyg
instances of a class and wam_mB.oE the _mcmx.ww?_a.ﬁ.rnﬁ.mmwmnmm_ow Whig,
When a servlet uses the maﬁm%m._oi) Eo.%.om“ it creates an HTTp ses o
and the stateful client interaction. There Is only one HTTP momﬂoumsﬁg
each client in each application. Some session tracking technigues Ecgg_
hidden form fields, URL rewriting and SSL sessions. : e o,

The server creates a small text file, called as a cookie ang ani
particular user with that cookie. The cookie is created by the gery, Males 1,
10 the browser along with the first HTTP response. The browser
stores it inside the browser’s memory. Whenever the browser sends
HTTP request to the server, it reads this cookie from its memory anq ghm_._g
the request. Thus, the cookie keeps travelling between the browse ity
server for every request-response pair.

The following syntax can be used to implement hidden form fieldsiny |

HTML page —
<INPUT TYPE=“HIDDEN” NAME = “SESSION” VALUE=*_.

This hidden field can be used to store information about the sessin |

However, it only works when every page is dynamically generated by a fim
submission. That’s why, general session tracking cannot be supported by
hidden form fields, but can only support tracking within a specific seriesd
operations.

The URL rewriting mechanism uses the encode URL() method of e
response object and the session ID is encoded into the URL path of m._.ne_g,
In the following example, the name of the path parameter is jsessionid -

http://host:port/myapp/index.html?jsessionid=1234 .

The value of the rewritten URL is used by the server to look up mam“w
state information and pass it to the servlet. It is similar to cookies. Eﬁwﬂa
cookies are typically enabled, but to ensure session tracking using

S i _?—
w@ﬁ::mu use encodeURL() in your servlets, or mnoom@WomﬁoEwr:
redirecting to a resource,

}
; ; : . 11 neth”
SSLis used for protection of data in transmit that encompasses® g

services using TCP/IP to support typical application tasks of commu™
between the clients and the servers,

top of TCP/IP and below application
the security of data transported and
make use of TCP as a communicatio
8..9& secure and authenticated co
Itis used mostly in HTTP server

It is an encryption technolo
level protocols, such as EA\:.N
routed through HTTP. Mmr _m o
n layer protocol to provide 2 HE
nnection between two points ©¥°
and client applications.

e
il |
1 |

€r, ang sy
monwgw fa |

T ang g

P

Software Architecture Implementation ﬂmn::o_omq.mm s

is EJB?

hat 3 =
0 39, 4 orse JavaBeans ﬁmz.wv is not an alternative for ISP/Serviets
ons mﬁwmﬁm J these technologies, such as JSP/Servlets and Struts cmm
etcC. .

business processing. EJB is also referred to ag Iransaction-

for per ve. In other words, 1t
D T y-duty ok, such | ©*gan
pkes care Mon - mmnEon.r .mmoczg
| _,M%m_%:w e onent-based =
EIB encourages comp 1 Fig. 3.19 Components Concept
+ For example, suppose i
Jevelopmen ﬁ create a shopping cast-based application. Then, we can think
(hat WE %a.m 0 ects customer data, order data, and payment data, EJB looks
| fthree mAID r onents and aims at building an integration layer between

¢ three as comp .
MM_HM_.% concept is shown 1n fig. 3.19.

0.40. What is the EJB architecture a:.a how it is related to the __._Nmm ?

Ans. The EJB architecture isa m@?ﬁ.mz._m noEvosoE&mmmm architecture
that models business logic of enterprise m._..o_u_.ﬁaﬁﬁo. EIBis E_ the :8.; o.», the
12EE architecture, which provides the big picture of enterprise %E._Sw%mmw.
12EE provides all infrastructure services to EJB, such as JDBC, JNDIL, IV
and JTA. ‘ RE
The EJB architecture simplifies enterprise m@ﬁ:am:o:m.g basing :..unB
onstandardized, modular, reusable components. The EJB architecture Eom_aaw
a complete set of services to those components and handles Em.:é detat m.o
application behaviour automatically. By automating many of the time Smﬁﬂ__wm
and difficult task of application development, J2EE ﬁnnr:o_omuw m%ﬂ -
enterprise developers to focus on adding value, which enhances business logic,
rather than building infrastructure.

041, What features does EJB provide ?
Ans. EJB provides the following features —

- () Transaction Management — A aoé_ounﬁﬂ. MMMHMMWN” property
s i ; i
of _%ouﬂmo beans need a transactional environment by ¢ Je the enterprise e

Woul €an you develop. This means that the oo% e managed by the EJB

5.: d Automatically run inside a transaction, éEo.r : the mmma code in the

S_B Stucture. That is, you can be rest assured that cither o all. For this the

en aaqmn bean would be executed ooBEaﬁq - .=o=m m&z%ﬁ%&%
ﬁ_.ﬁ_._mm _uom__‘Hu . turn, calls an API of the EIB container mp

qction

; he transact
”Mé_cumﬂ does not have to worry about it. Notice %m_w“ nnca%m%nm
M_smmoﬁasﬁ applies to the whole bean, and not to ar¥ et

106 Software Architectures

within that bean. That is, suppose an end-of-day stock update il
the following two steps —
(a) Readeach record (sales/purchase) from
(b) Update the corresponding master file
of the transaction.

Now, when the code for the above operation is ready, the
set the transaction-enabled property of the bean to true, that
bean is executed, the responsibility of making sure that the Whole {;
file is processed, and the master file updated correctly, is lef o s ME
failure occurs, the bean would automatically roll back the changes dq Mms_ Ity
master file since the bean was invoked thus ensuring databage cong; €ty

(#) Persistence — Persistence means storing the state omgmﬁm_.uu.
some form of permanent storage like a disk. When a developer Eaﬁﬁam_ﬂ gs
EJB container that the wishes to make an enterprise bean ﬁoﬂmﬂ.maw.om_.gmg& gm
EJB container automatically ensures that the last state of the enterprise beap o.a._.a
is preserved on the disk, and later on retrieved. This is important in sifuatiors
where an enterprise bean has to store certain values on the server-side. For example
suppose a user Visits a shopping cart. Then the user disconnects. Now, the state of
the user’s transaction can be recorded in a database or the enterprise bean managig
the user conversation can store it. When the user connects back, say after three
days, the enterprise bean brings back the values for that user from the disk, so
the user can continue purchasing or complete his purchasing process.

(iti) Remote Awareness — EJB is all about remote objects. Sinct
objects and clients can be in different parts of the world, it is important that m__
these objects are allowed to communicate over networks. A developer dos
not have to write any kind of network code to make the enterprise beans i
he develops, network-aware/distributed. The EJB container automatically does
HE.m. For this, the EJB container wraps the enterprise bean in a nngoﬁw-%%_nm
object. This network-enabled object intercepts calls from remote clients,
delegates then to the appropriate enterprise bean.

. (%) Mulfi-user Support — The EJB container implicitly &

code Hm@::.am for allowing an enterprise bean to work with several ol

the Same tme. It provides built-in support for multithreading, fic
multiple instances of an enterprise bean whenever needed, etc., ol

(v) Location Tran

bean does not worry ab
by the EJB container.

In addition to these, the EJB server js responsible for creating EMM_
New components, managing database connections, threads and sockets:

n 355

adaily smzwmn_m

0
record with ¢, g

ey,

m<m_.0ﬁ.@_.

1S Wheney, ly

mnmg

: li
sparency — The client of an enterprise mmwus_
outthe actual physical location of the bean: 1
noes”
elc

Software Architecture Implementatiop, Technologie
s 107

uss about session beans.

Disc . . 2
42 . pean contains some specific business

m_os -Eoo,owmi ﬁ&m
me object that encapsulates the necessary code mo%.a%mgh“

jLisa e noa,m%o:.ﬁ:zm 6 one more business processes, The business
pusiness 1081C; business rules or ,.<onwmos.. A session bean js 3
0cesSE of software. For example, a session bean Update salary could
¢ the salary of one or all employees.
pe used ion stems from the fact that the life of a session bean
he time for which a o:.na uses the services of a session bean. When
_ma:& tot e invokes the services of a session bean the application server
Wammno of the session bean. The session bean then services the

ates a0 " necessary. When the client completes the job and disconnects,
chen . cation server destroys the instance of the session bean.
the app _. thnce of @ session bean is unique i.e., no two or more clients can
An E_ﬂ le session bean. This is essential for ensuring transaction
0 w If two or more clients use the services of the same instance of a
amzwmqﬂww .Ema would be confusion. Because they might accidentally access
ﬂwmwmwm gmmm. To avoid this, session beans can be Emm.m thread-safe, 50 that
wo or more session beans can share noﬂmu but maintain separate copies of
data. However, this is an implementation issue that cam.am to be %nama by Eo
application server vendor. From a common developer’s perspective, session
bean is never shared among users.)

A client never explicitly creates an instance of, or destroys, a session bean.
Itis always done by the EJB container running inside the application Server. 1
ensures optimum utilization of bean resources. Also, this frees the n:mE EE
issues such as stack management, memory management etc., and provides him
with an interface. The application server does the bean management. \

There are two types of session beans, stateful session beans and stateless
Session beans. !

(i) Stateful Session Beans — A session beat moﬂmmwoammwwﬂmm

process. However, a business process may complete it} E:%n mnznm

.,Um i might need more than one interaction between the client h“_ mnmmna when

E:m toncept of transactions is more relevant for the latter. In mam _%a_a_n of
© Clients and servers interact more than once during the €

. . m.ﬁ.m._aa
mdwwm teractions, the state of the application must _M%RMMHM tionas3

S durj : . : ;
Who o&_:sm these set of interactions completes sucess Y ¢ siuations, Of

1 (W
¢an be considered to be successful. For handling mwaﬁonma.
Orrectly transactions, stateful session beans are v een he clied! and
=§> Je._am_ situation that needs multiple interactions .cme_q the applicatio™
mig _Mé_. ' ashopping cart in an e-commerce application- - ht w% items to 1
Eamm:; m_.—ovwwsmomnﬁcﬁrn:mmh ﬂ_mu _

are
Jient as o008

ghar

businegg

Soﬂa ¢

the user mig

108 Software Architectures

remove items from it, or change some of the items. This interyg

quite some time. In such a scenario, a stateful session is Vetyis tiop

(ii) Stateless Session Beans — An interaction ggaamom__
and a Web server consists of a request-response pair. It meang M__ aWel brg
sends a request for an HTML document, the server finds th at th aswus
sends it back as a response to the browser. In such situationg € aaoss._na Y
and the server interact ina _,ne._wm?ﬁowﬁoumm mode, and Earsm.:aa the gﬂs
there is no necessity for maintaining the state of the application g Orget abgy I
beans are candidates for such business processes. - State]egg mgmm_r

For example, in an e-commerce application, the client mj el U
cards details, such as its issuing company, number, expi Moaﬂ Creg
customer’s name. It might request a stateless session bean to “w o and
card. This stateless session bean might perform the <onmommm:@ this cre
success or failure message back to the client, depending’on w rcmw and sepg,
card is valid. This requires no more interactions between Emo _.m T the crefy
server. Such business scenarios are useful for stateless session MMMMM Tk

0.43. Can a stateless session bean maintain state ?

. \mE Yes, a stateless session beans can contain non-client specific state
client E@oﬁmm methods. For example, states such as socket connection. &M_”gm
connections, reference to an EJBObject, and so on can be maintained umc :
they cannot have state specific to any client across client-invoked Bﬂwoﬁ_ms =

0.44. What are the classes and interfaces that make a stateful session EE

- M“M..m W mme?H. session bean is an EJB component, which extends tvo
and a b w ome interface (EJBHome) and a remote interface (EJBObjet)
ean class that implements the SessionBean interface. :

0.45. Describe the steps to implement a stateless session bean in defail
(R.GPY, June 2013)

Ans. i i
ns. The implementation of the remote home interface SignOnHor®

remote interface Si . ; ;
discussed below I_mEOu and the stateless session bean class SignOnEJB

Defining the H , s
defined as woﬂosm loEm Interface — The home interface, m_m:O:moan__

package day04:

Import java.rmi.Remotek, i

i j : xce :
1mport javax.ejb.*: pron

public interface Sj
i gnOnHome
SignOn create() extends EJBHome {

thr n :
OWSs Qomﬂmmxonﬁrozu RemoteException;

Bogg o \ |

Software Architecture Implementati
ntation Techy,
ologies 109

the create() method on the home interface is cq]y ;
nd a reference to the remote interface is recejve, %a tocreate a
omponent Interface — .
The gignOn remote interface is defined as follows —
package day04;
._amoi%m.::._.*m
manon_.méx.m_@.*.w
public interface SignOn extends EJBobject
{ public boolean validateUser(String login, String password)
throws InvalidLoginException, RemoteException;
}

This interface has onc business method, validateuser, which is callable
py the client. The remote interface is a Java RMI interface. Hence, method
Emaamam and return types of a remote method must be legal types for
RMI/TIOP and the method must have java.rmi.RemoteException in its throws
clause. ?é:QHQmN.:mHnmﬁmg is a customized application exception thrown
by the SignOn enterprise bean to report an unsuccessful login attempt.

Implementing the Enterprise Bean Class — The implementation of the
mmmuoﬂpmqw enterprise bean class is given below. The stateless session bean
implements the _.m<mx.o?.mommmouwomu interface. It implements the methods
setSessionContext(), ejbCreate(), ejbActivate(), ejbPassivate, and gjbRemove.
The ejbCreate method creates an instance of Fﬁu.aéuﬁmazmﬁomsﬁ and
looks up the environment naming coniext through the InitialContext under the
name “java:comp/env”. Besides, it implements the validate user method that
accepts the user’s login name and password as parameters and return .
the login is successful. The method throws tovalidloginException if the login
name and password are invalid.

package day04;
import java.util.¥;
import java.ejb.*;
import javax.naming.*; .
public class SignOnEJB implements SessionBean {
private SessionContext ctX;
private context environment;
public SignOnEJB() {
print(“The container crea
: cssionContext o) {

public void mmﬁmmmm._osnonaﬁﬁm -’
print(“The container called the set ﬂ %
print(“so that the bean instance cat

ted this instance ")

s true if

110 Software Architectures

y
“ AH:EN_OO_:QQ ic = new InitialContext();
environment = (context) ic.lookup Ad.mé”no_:_, Jotrih
catch (NamingException ne) { nv?),
throw new CreateException (“could not logk up e
} . . exi).
/* Methods ejbActivate and ejbPassivate are not useq b
session beans Ateeg
_*
public void ejbActivate(Y{}
public void ejbPassivate() { 3
public void ejpRemove () {

print(“This instance is in the process of being removed”),

print(“by the container\n”); e
} o R
public boolean validateUser (String userName, String ,wmm?aa&

throws InvalidLoginException {

try { _ ‘

String storedPassword = (String) environment.lookup

) (userName);
if (storedPassword.equals(password)) { :

return true;
1

else {

throw, new InvalidLoginException(“Invalid login/
\ ‘ ~ password”);

catch(NamingException ne) {

throw new Fe.w:ahommumxnmb:o: (“Invalid login/
password”™);

}

void print (String s) {

d mwMSB.oE%aEE@W
s
b

riting the Exception Class — : is
ass — Th i i tion class
defined below. This class has been deri Rl paiy o

Moy, o
package day04; ved from java.lang.Exceptio

HM:E_.D class InvalidException extends Exception

public F<m_ahom_.zmxo%:oi)

software Architecture Implementation Technologies it

super()
}

public nvalidLoginException(Exception €)

{

.Wéc:o InvalidLoginException(String s)

{

m:@ﬁ?.ﬁominma »;

m:ﬁmammvw

M "
i yeployment Descriptors — The deployment descriptor
hnn_wamn._w”bw_uwm MM&oﬁumE settings. The ejb-jar.xml deployment
%mﬂw@m wmo_. the SignOn enterprise bean is given below. It describes the
%monﬂ“ demqm deployment properties Jike its bean type and structure.
e <1xml version = “1.077>
<IDOCTYPE ejb-jar PUBLIC .
¢_//Sun Microsystems, Inc.//DTD Enterprise JavaBeans2.0//
mz- - - .
“http:/fj w<m.msa.noB\&&m._d._mH.wqo.@& >
<ejb-jar>
<enterprise-beans>
- <gession>
. A&.v-ntmvmwmuOsmHmA\m?.umBmv
AroBoVamwob.mmmuOumoEmAEoBmv
ARBE@Q&QPE@OﬂAﬁmBoﬁV
Am_.d-n__mmemm%g.mwmmompmuww\m?.ammmv
<session-type>Stateless</ session-type~ -
Aﬂmbwmomou.gmvogﬁmmuﬂ&ﬁnmmnnon.gu
<env-entry>
Am:<-gm.:m83m8amBAap.,\-Sﬁ.umBov.gmv
An=<-m:3?gmvu.w<m._m=m.mﬁbm&m%-mn“quv
Aob?m:u.wémEoVummwéoa&oE-gaa |
</env-entry>))
<env-entry-name>student KW%MMHHMMM“M%V
Aa:fasa_.govh.mﬁpmwm.mﬁcm e
<env-entry-value>passw
</env-entry>
</session>
</enterprise-beans>
</ejb-jar>

112 Software Architectures Software Architecture Implementation Technologigs 113

0.46. Discuss about entity beans. (ity beans have a much _onmo.n life than session beats, because

Ans. The entity beans represent database objects, which ejhe, bri oaﬁoum_x n=oa for representing n._mﬁm that is preserved across user sesgions.
from databases to running applications, when required, or update dyg a,sm gy et u.nm us shes, O @ client disconnects w.BE a server for some reasop,
databases, when requested by the application. An entity bean ig i :M_ Infy the &__Em_%_mnm:o: nnw_imwm be reconstructe d from its underlying database, ,
object representation of persistent data stored in a database. Thus, an éggq fon ity pean can ror from gession beans in one more respect. Whereas only
can be used for modelling data items such as a bank account, an itery e mn:q begyy %ma& peans ditl gle session bean instance at a time, an entity bean can
order, an employee record, and so on. They can also represent Bm_éo:m:@ms sef 68 use @ E:o:mn_U at the same time. Another point is that since entity
such as products, employees and customers. Thus, entity beans dg not mmmw._o& %w MO than MM..M.@ 4 in databases, they are vary useful when there is huge

themselves directly with business processes. They are useful for g, aaEsmgﬂm Wmm%m model data that need to be Web-enabled by using EJB,

acy applications

elements only. In contrast, session beans handle the business Processes Gy P existing in leg es, bean-managed persistent entity beans, and
Thus, transfer amount could be a business process, which can be HE.E I ol ity beans are of awco JW :MH.Q Lo -
a session bean. This process would need to credit one account and debjt NEQ_M ed by ah.amvam:aw& persistent eniity . . ¢ 7
information regarding which accounts to credit and debit, and the end regyj- L The S . mmaa\Eaaahmm Nma.ﬁman man.u.e Beans — H.n.ﬂEm type of entity
£, must g @ nsibility of locating, changing, and writing back the data

represented by one or more entity beans. Thus, session beans ugg: et
3 -en Hnmﬁo - %
whenever they want to access or update persistent data from databaseg 1 beamy Bl 10 © bean and the persistent storage o.m the m.mscmmm is left to the
. eans that the developer has to explicitly write program code for

Entity beans were devised for a reason that whereas most of today’ ﬁ Joper. It m!
databases are in the relational form, the applications that make use of Ewmm %M nw:_m all these tasks.
gmﬁ@&mu use the object technology. Thus, a mapping is needed between EM 1% i Container-managed Persistent Entity Beans — In this type of
R_mz.oum_ ﬁmi and the object view. This is provided by entity beans, The . (i) the EJB container performs automatic persistence on behalf of
permit session beans to treat the persistent data in relational tables, as og.mamw iy c@_m :wm% The developer ao.ow not hard code any statements required for
e mxmﬂm_w, in the fransfer amount example, an entity bean could be ”_g@ w.aé Mﬂmmmmbm or writing back the data between an entity bean and the
used by a session bean for reading the account details in an account object. oom%mw database. Instead, the developer describes what he wants, and the
Suppose En name of account holder is abc. The session bean might then issue :mww Qw_:”mmgon vmnmo.ﬂsw the mmdm_mﬁon from the developer’s description to the
Mu?@m\ma instruction on ﬁmﬁ account i.e., the abc account object. For example, sctual program code. It makes the wuw_wnmmou database independent, gnmﬁ.n
¢ mnstruction could be in form abe.transfer (1100, 2100, 200). As farasthe e devel, u d t write code specific for a database, and instead, leaves it
session bean is concerned, it is sticking to the ik bited paradiery 08 . oper does not write ¢ p

’ : ; > tothe EJB container.
creating objects, and manipulating them with the help of their methods such S

i m.nzh\.mn However, internally, the account object might represent 0n¢ 0.47. Write short note on message driven beans.
MMMHMAHWMNMM O%Mu accounts relational table, which gets updated as ar esultof | Ans. Message-driven beans are stateless components thatare %oEwmw”MM
mmmaow bEan. ani m&n_wncg.@mms hides these jmplementation details from EM oked by the container as a result of the arrival of a Java meM_mm M_Zm
pronegpiney | OWs it to treat every piece persistent data as real-worl (M) Message. A message-driven bean receives message Hom * " "

A] s s shown in fig. 3.20. : %m_::ﬂ_o:u like a queue or topic, and performs business logic on Em cmma 0
Client Code e Message contents, like logic mo receive the process @ client potificato®

Am_wmﬂeq Involk A sho :] m~ : xmb%_n ofa Bmmmmmm-
) pper making an online purchase order 15 af e an. A credit

" drg 2 . .
Puteiprisc ,.ﬂ,%: ,a.oms. An order bean could inform a credit <na.._om:ou _uaw oland
mnE__Mas: bean could check the shopper’s credit card in .Bn Wm%wmnﬁouoﬁu
3 . 3 . 3 n
Notification message for approval. Since this notificatto mplete.

the <o [0 CO
ro_u_ug. does not have to wait for the @mnwmho%g uaoomm_:m

.4 : o oaep dtaordi
048, Whgy is middleware concept ? Explaim EEMM hmw_ ¥, Juné 2011)

oh level.

Acc_No Name Balance
1100 abe 1100

Ang ’ hi
™ Fig. 3.21 shows the basic idea of middlewar® aLe

Fig. 3.20 Session ang Entity Beans

Communication
link and protocols

Programming interface
and common data formats

Directory service, Security,
s
Process control, etc.

Fig. 3.21 Middleware Concept

; Obviously, if two computers X and Y want to e v
MSE each other and perform any business operati L Vooasﬂasg
important role to play i ol ddlons
nportant role to play in many ways. The various aspects of-mj 1€ gy
discussed below — ot middlcyarey
(i) The communication link and R, ,
)] k . the protocols allow
; . ; cots allo ;
M.cEE;Enmnou .@wgmﬁ X and Y. The physical ooEEchm:oudm%M_u .
can be done using wired networks such as LAN or WAN, or :.Smwwsm
H -als0

done wirelessly such as cellular network or wireless LAN. However, the impora
2] I

thing is that here are two sets of protocols that-weare-tabienzg=ef. The firstist:|

low nnicati i ¢
gm“““ MMM_M;H%%NUWU protocol, .Ew._nc is Hom_uosmin.m_e._.&m actul
Srafbadlntl m .8 Y and-viee-vessa. Another is the middlew
peios m% ch allows the dialog between X and Y. The middleware protod

es the availability and reliability of the lower layer protocol. .
o %MWMMM MWS%ESSEW interface and the common data fornt
e e can communicate with each other through the middleva®
Thacs e ot worried about the communication of X and Y direatly”?
The data moadmﬂm are worried about their communication with the imiddlewe®
XandYina _SM% sed should enable the middleware to communicate _umzﬁm_
gty orm manner, and the programming interface should &
EWmﬂm& no gaps in communication.
PN § _MM o%ﬁ elements are add-ons. For example, gl
make use of them P X to locate the various services available on ¥ m:w__g
S Ay as appropriate. Security would ensure that the 8%%%_3_“
multiple requ is safe. Process control would ensure that Y is able®?
quests efficiently, providing good response time-

iie directo?

0.49. Write sh .
ite short note on Message Oriented Middlewdr? QEEN%_
R.GPYV., Dec.
Ans. A ; .
indisoctly Hrww”owauo:m communication allows the parties
gh a message queue. The software that manage

Software Architecture Implementation Technologies 1
8 115

s Message Qq_.miw& Eu.&&msiﬁm (MOM). The sender seng
inues S.:r. its other work without waiting for ap mwwuasm
ssage goes into 2 message queue and waits until the Bon?m
and process it. Usually, both, the sender and the Rom.zoﬁ.
o software set up at their respective ends. The B.ommmw
e outgoing messages into and read incoming Bammmmmmw
¢ database. This is shown in fig. 3.22.

Message Zau.mw,mm
receiving

sending licati
u_um._mnuna.ﬁ application
() (B)

Message Queue Server
. Internet

Message

Message
Database

_um.ﬁm_uumo

Fig. 3.22 Message Queues

for the receiver B. The message g0¢s
er has messaging software and 2
d to the queue maintained in the
for depositing these messages
one by one when their turn
In this case, itis received by
at B, The software at B

Here, the sender A sends a message
o the message queue server of A. This serv
message database. The new message is adde
database. The messaging software is responsible
o he database scheduling them, retrieving them
wmes, and then transporting them to the receiver.
I messaging software of the message queue Server
fores it in the database, until B retrieves it. |

30\ Write in brief on ODBC. (R.GPYV., June 2010, Dec. 2010)

Or
What is ODBC ? (R.GRY, June 2015)
g Java EE

Ans. Man erpri ications’
y enterprise applications that n specific

HQUD 1 i i
_aoqw_m.mx need to interact with databases for storiné applicatt®
alion. For example, search engines use Jatabase for storing!

wg.s: 1 i

the stwaéwv pages. Job portals use database for storing E?nwm

Jobs g _= ates and employers, accessing the site for searching a0
e Internet. However, interacting wi

“0neetivity, Tp
With umhﬂ.w This can be achieved by using the
* Database Connectivity (JDBC) © interact

Orag)
in :zm, W\M Access, My SQL and SQL server- JDBC is an
Bramming for interacting with database.

are created usin

et

116 Software Architectures

Q[51)What is JDBC ?

._E.N.._,mé Database Connectivity (JDBC) is a set of)
for allowing any Java application to work with an RDBMg ;
It means that the programmer need not worry about the di
RDBMS technologies, and can consider all RDBMS pro
which all work in a similar fashion. ,

The conceptual view of JDBC is shown in fig. 38

—From=fig-=3-23, the main idea of
JDBC is to provide a layer of abstraction
to our programs while dealing with the
various RDBMS products. Instead of
our programs having to understand and
code in the RDBMS-specific language,
they can be written in Java. It means that
our Java code needs to speak in JDBC.
JDBC, in turn, transforms our code into
the anaovnmﬁm RDBMS language.

a
>Sang in

D aypjpy 1

feren,

ducts g

0

m%_z _5__,
Iy,

ey

R . Fig. 3.23 JDBC Concept
IDBC e more imerce o clases, 50 ot ot

. ; . : rent vendors are freg |y
Eo/.:am an appropriate implementation for the specification. Overall, s
30 interfaces and 9 classes are provided, such as Connection mﬁ_aa%
Prepared Statement, ResultSet, and SQLException. e 1

(@) Q.azamn.a.aa Object — 1t is the pipe between a Java progran o
the RDBMS. It is the object through which commands and data flow befye
our program and the RDBMS, -

. (ii) Statement Object — This object sends SQL. commands, u%

the pipe, that can be executed on the RDBMS. There are three type d
commands that can be executed by using this object — a0
. (a) Statement Object — This object is used to de

execute static SQL statements,

ul
(b) PreparedStatement — This object is used t© define
execute dynamic SQL statements, A n

i
(¢) CallableStatement — This object js used 0 defin’
execute stored procedyres,

fine !

d 1) ResultSet Object—The result of executing Statement}
some data. This data is returned inside an object of type ResultSet { et
ith

: : ! ‘ s
in JDBC., ") SQLException Object - This object is used 10 deal

5 __%____

' DBC software on the client to Open Database Co

A

Software Architecture Implementaion Technologies 117
the components of JDBC ?
f JDBC drivers are as-follows -
. 1 : ,
Ans) The “ W Nm %Mmﬁﬁ Suite M_:wv .MMM %MOO.WMWMVMMMMWQ
types of JDBC drivers in Java. |
R.GPV, Dec, 2010)

pBC drivers can be obtained from a number of sources, provide

els of functionality, and vary in their use of supporting software.
JDBC drivers are the J2SE SDK itself, database vendors, and
. Functionality is defined by the version of JDBC

S Nyhat aré

0462 omponents 0

(iif) The
[ain various

) 53. Exp

pe 4 driver, is Java software that is loaded onto the client
direct communication with a DBMS. Type 4 drivers
oftware other than the DBMS itself. All of the other

ypes depend on additional software to ooBEﬂn an. ?p.omonmza. AType3
geiver is Java client software that ooH.ﬂBchmam with intermediary server
software, which in turn communicates with one or more mnE.E database systems.

ftware on a client machine to communicate

AType 2 driver permits JDBC so : :
a:m Wos-umé\ DBMS communication software also loaded on the client, which
If Finally, a Type 1 driver connects

in turn communicates with the DBMS itse
nnectivity (ODBC) software

then be used to access any |
driver is also known as 2

machine and mc@@wnm
require 10 supporting S

also residing on the client. The ODBC software can
of the many OUWO-aoB@:mE DBMSs. A Type 1
IDBC - ODBC bridge.

0.54. Explain how fo connect to a local MS ac
.E__.wn driver ?

cess database using a

Or

. P mﬁ‘ ;
Write the steps of setting up an Open ectivity (OPBO)

base Conn
Databas i Dk 2015)

(R.GRV,, June

Or
. What is database connectivity ? Explain the
"ddleware Eﬁﬁm&. ODBC and JDBC technologies. " the same
_Ans. We wish to connect to a Microsoft Access %Swmwm%om is ODBC-
Windows xp machine that hosts our Java serviet Because >o_o%<oa. o
,gszaa%mo.%%Emzétcmo-ouwo%mma%m .

basic connectivity
(R.GP. ¥, June 2014)

510 JDBC gy . s S _ma
_ river soft to install in this case, 0= DB cli
%Méng inthe J mwMo. quﬂwm We also donotneed HM _ESMM_NE D o need
b i Windows &+

to 5.?9 because this is installed by default mwa w N ftabase

the Windows ODBC client software 8

4

118 Software Architectures

For the moment, SUppose :.SH. we have already createq an >ooa$
named Employee and mﬁo_.on._ it in a file named me_o%mo.B&u.., %ms_ﬁg
associate an ODBC driver with E.Hm database as follows, From the Sa.ﬁ W
Control Panel, select >==...Em=.m:.<m Tools m:a then Datg mcE.g.m Ao_gof
In the ODBC Data Source Administrator window, select the cnow,ugg_
and click the Add...button. In the O_.mm:_o New Data Source Windy SN M
Microsoft Access Driver (*.mdb) and click the Finish buttoy F:Hé. Seley
Microsoft Access Setup window, enter EmployeeDB in the Day moEM Onge
text box, click the select....button in the Database area, ang .Ecﬂzmsm
Employee.mdb file. After selecting Em and clicking OK in the select [y w.” fo
window, click OK in the ODBC Microsoft Access mm:%.ﬁ:b e wg
EmployeeDB will appear in the list of User Data Sources in.the, wa_o coz_
Source Administrator window. Finally, click OK in this window, . . A

If we don’t have an Access database already, then we can create
ODBC tool as follows. Follow the instructions in the preceding pa
in the ODBC Microsoft Access Setup Window, after entering the Dagy Source

 Name click the Create....button instead of the mo_wnﬁ..‘..g:on. Then' give
database a file name, like Employee.mdb, and click OK. We should see apop-
up message telling us that your database was successfully created;'As in fye

preceding paragraph, click OK several times to complete the ODBC setup,

Once the ODBC association has been made, we can connect tg Employee

database from a Java servlet (or from any Java program) as follows —

\an:mw the
Tagraph, by

Software Architecture Implementation Technologies 119

1. The other two arguments to getConnection(Y are
word associated with the ODBC EmployeeDB gy,
are both the empty string. The connection object retumed
also use the driver loaded by forName() forall databage

o support JDBC methods called on this object.

0.5 Explain nnect to 2 MySQL DBMS running ona server machine

. 0 : iy , .
We ﬁﬁww”w: MEW g on a client machine. This is accomplished using a
mmim

: ided by MySQL.
Type a) gn‘..amrwmo,“o EEM already created a MySQL database-named
Let’s assume hipe with host name db.example.net. Also, assume that the
o ts' TCP/IP connections (local or remote) on its default
MySQL Uwvmmﬁ.%%nﬂwo user someuser with password ﬂkuauéoﬁ has com.m
port wWo% :mwoommm to the Employee database from the client machine. We wi
Eman

iver JAR file to the client machine.
MySQL connector/J driver : :

Sy moéaomw._ﬁwommw\cm the download file, we see .Ea a:.nﬂomnw. uﬁ_m

>m.§ cﬂwo ﬁma'ooﬁ..ﬂmﬂoﬁ. In this directory, we will find the a:,...ow o
gmaﬁam:.ﬁmoﬁw\m a name beginning with .Ewwpromnﬁaamﬂ Oﬂuﬁﬂww Mnm

b i nder our JWSDP installation directory.

the %nwmwﬁ@cwwwmmmn‘mwwﬁ this JAR file will automatically be added to the

o : the server. :
ATH for any servlets run by .) o
or>wMMo the Connector/J JAR file has been installed, the following code can

String dataSourceNaime = “EmployeeDB”; "
String dbURI = “jdbe:odbe:” + dataSourceName; s
try { ‘ « L ,
Class.forName (“sun.jdbc.odbe.JdbcOdbeDriver”); :
Java.sql.Connection con = (_.m<m.mc_.Ua?mmgmnmmmhmnﬁOoE_a&._S
, (dbURL, 7, *7)
w con.close(); //To close the connection . ot At
catch(Exception e) { .
e.printStackTrace(); fry {
}

. ' P
The static forName() method of Class causes the Java virtual machin®

; C
load the specified class, which is-the name of the SDK-supplied Type VIR

. : o
driver. When getConnection() is subsequently called on the JDBC DriverMands
n_mmmu_.;mmﬁam%

) ver to establish a connection with the database E&nwwmw
its first argument, a UR]. When connecting to a database through h® Jowed }
ODBC bridge, the URI s a URN consisting of the ﬁnomw._m_un”om_un“ v omam catch (E i

by an ODBC data source name. In this example, we use the data ol ot pn

. . ¢ Dot? servletOut.print(e);
EmployeeDB that we associated with the Employee database using th) print(e)

serviet, o Javacode
beused to access the mEEo%on.amﬁ%m.mm. fromd %Mﬁ_ar |9. from mB_ i
that has the Connector/J JAR: Em on its OE. %.Hn H
l/set the following four string’s as_ wﬂﬁocnm
String host="db.example.net:3306™;
String dbname= “Employee”;
String username = ,,moBmcmmH:“as .
String password = “mypassword’;]
. — e - u“: + :_ﬁu + U.Owﬁ B =
String dbURI = “jdbe:mysq ' usemame -+ “passwor d:

s —
ap + dbname + “Tuser=
? Ummmﬁoa,

/IThe newInstance() call is a io«w around mow
/lsome broken Java Implementations) newln
Qmwm.woﬂZ.mBahnooB.Ewmn_.u.&unbné) ection
connection con = DriverManager.getConn
//TDBC calls to con methods go here..-
con.close();

stance();

(dbURD;

Software Architecture Implementation Technologies 121

120 Software Architectures . . (is JNDI'? Explain. . .

0.56. Explain JDBC methods for accessing a databaye, N @\:a . and Directory Interface Gﬂac is a unified Java AP

Ans. A connection object is used to obtain information aboug g : ¢ fava Zu_ﬁ_:mmu access to a variety of naming and directory services.
like the tables it contains, as well as to set parameters of the mEnSa m.m_m_ugm __;M. 0 mgsam&ﬁ s is what makes J2EE an attractive enterprise
the database, like whether or not changes to database wjj| be Cliop Wity Jesig"° gract mecha? nd intranet applications. Applications are written in
automatically. For database access, however, the only 1, ozsanoas:ﬁ_ 7his wcﬂa for Intere JNDI AP, which transparently calls the underlying
Connection is createStatement(). This method returns ap obje o,m:& ! a%_an.a way o Use ot A JNDI compliant service must implement part
Statement that can be used to send SQL statements to the amﬁcm og_a u%%& directory gervice. +itecture describe in two parts INDI AP and
retrieve results produced by the statements. In particular, ifa Stri ¢ and qaming o 1. Here JNDI arc

; . ing interface (API) are used by the
a SQL statement is passed to the execute() method of a Statem, g H%a%asw of NDI AP ppli cation-level programming (API)

j i i fices. A servi _
the database will execute that statement. The result of executing 5 mmw_.u“ﬂp they JNDI m_w_. >Mow..uo=msa to access :mﬂ_umm Mﬂw mm_nnam“wom_ MMM M m.w : a:mn._wwm
may be nothing, such as creation of a table, a row count such as perfo Cmep m%_saa:ﬁ_\@om (SP) isused topluginap o
INSERT, UPDATE, or DELETE, or a result set such as c&o:ﬂﬁmm mn%mwﬁ a E%EQ Eg DEE pla tfrom. ;
The methods getUpdateCount() and getResultSet() are used tq retriey CT, ervice tot [architecture is shown in fig. 3.24.
row count and result set, respectively, after executing a SQL Statément e the The JNDla

For example, suppose that a Connection object named ¢q
created, the following statements will create a table, insert a row
and output to a message indicating that one row inserted —

Statement stmt = con.createStatement();)

stmt.execute(“CREATE TABLE Interests™ + “(Name VARCHAR (50)

Interests <>WOEG8§._M
stmt.execute(*INSERT INTO Interests VALUES” + “(“Amit’, drawing,
swimming, writing’)");

System.out.println(“Row count is” +stmt.getUpdateCount()); 1\

—ﬂﬁ Applicati ==||—

0 has g,
in the table,

JNDI API (Client Layer)

JNDI SPI (Server Layer)

The getResultSet method returns an object of ResultSet, or tiull, if a result /

set was not produced by the most recent call to execute(). The ResultSet object : e Server | |Novell Directory Soxvietd
provides methods for positioning to a certain row within the result set and for Lightweight Directory UaBﬁ:ﬁﬂ w__m.u (NDS)
obtaining data from the fields in a row. Continuing the example, the following TR
code can be used to iterate through all of the rows in the EmployeeInterests table ‘ .
created by the preceding code and to output both fields of each row — \L ‘
wgﬂ.mwwo:ﬁmﬁ,mmrmﬂﬁ*wwog\mBEowooFSnmma:& % — =
ResultSet rs = stmt.getResultSet(); “
if(rs!=null) {

while (rs.next())

; —

mH- |

Ll
\

il
I
I

System.out.printIn(rs getString(“). I
. % MA ZNEQ vv. - . ?.&mhnﬁﬂm Q«ﬂ%
mwmﬂmE.ocwEEHEQm.moﬁmﬁzm?gﬁ erests”)); Fig. 3.24 Archi popular

is the most
1 i Lbap (Lightweight directory access maoanowuwwaé services.
} : ectory protocol and is used as a standard network t by its name instead
» 0 0s
tim Hr.w cﬂﬁ v o positions the result set cursor at the next Bﬂ .ww% of j DNS (Domain naming service) is used to refertoah
the st ll g om) S CUISOF 5 positioned just before the frs O | °F 1S numerie P aqress ingservice 05105
nextt) positions the cursor of the first row. The calls t0 & ND ; ices) is used as a nam?
) access fields in the row pointe L o be accessod angd S (Novell directory services) is use

a § d to by the cursor. Ficlds can als Broup i . ication purposes-
by ordinal (i.e., 1, 2 etc.) rather than name, P information for mﬁro::nwnoj puc

5

122 Software Architectures

The JNDI model defines a hierarchical namespace iy Which,
objects. Each object in the namespace may have attributes that cqyy _waz o
search for the object. -

Naming and directory services are :&:E:m partners. In fy
products provide both sets of functionality.

Naming services provide name-to-object mapping and &520@ :
provide information about the object and tools for searching fop Emsmmzag
As a part of the common J2EE services INDI enables seamless n,om_.
S_aaamo:mocmm:qoeammum_inmw:a%Hmnﬁonm_ioam,Ug,H

i dl : G—OUQ.Q
powerful and portable directory-enabled applications using the JN[

@N@E? in brief Java message service (JMS).
Ans. Java message service (JMS) is a common API
programiming interface) and provider framework that enable

a:mafa

Ct mogy atz_z
§

855
A bl
)| mS_EE. s,

ﬁmg:.nmaos leve)

: P S the developpe,
of portable, message-based enterprise applications. The IMS Apj i an’
abstraction of the interfaces and E . 1
classes that JMS clients use to K.
handle messages when in IMS Messages
communication with a JMS' r JMS API Client

provider. This is analogous to “ a 4
the use of JDBC as a unified

API to access data sources
using JDBC to connect to a
database, or JDNI to access
naming and directory services
using JNDI for naming services
and components. JMS is not a

messaging system by itself, it’s

an API to access an existing

messaging system.

IBM s Fiorano JMS
. S |
MQSeries onic MQ MQ Provider

Messaging Server

Fig. 3.25 The Architecture of Java
Message Service (JMS)
The JMS architecture as shown in fig. 3.25. Figure depicts all the layers

that n.ou.mmEHo IMS architecture, and the relationships between them. A brief
description of each layer is as follows —

(U) JMS Clients — 1t is send and receive messages through 2 IMS
provider.

(ii) &Eﬁ Messages — Applications define a set of messages that 2r¢
used to communicate information between its clients. MS
~ (5i) IMS API ~ Unified interfaces and classes to be used by all
clients, s
: «@. JMS Provider — The messaging system (MOM) that mam_m_ww_mm
JMS in addition to other administrative and control functionality requir®
full-featured messaging product,

ns.\ma Architecture Implementation Techriologies 173
Softw

.Qv.‘.mnnm — These are ﬁnoéozm.mim_aqgw objects
der’s administrator for the use of clients. Administered
Vi

IMSPrOT " 325,
e wn E.mm.ﬁgmv specification defines these architecture
5sage mm?,ooammm portable enterprise m@b:owmonm. It awam not
" ?o:_EMoM& functionality such as clustering, security and
. a s
n omﬂu\mnﬁsH potification. : ;

an viders offer products of varying IMS support. Some
f JMS pro MQ from Progress, FioranoMQ from Fiorano,

e wmm_moaom from IBM and the open soruce JBossMQ
EA,

- istered

fom JBOS®- te on JRML
Or .
o , 2015,
ote Method Invocation (RMD). «N.m_.mﬁ._ Dec. 2010 rp
peine et a programming language has vE:-E mc,Euo: .mmmmﬁwm
. Ans. The o : _M.wmmoa computing model. ,D.um support H.m E.o«ﬂ: 1 .
gisributed il g service. RMI is an alternative technology

ation (RMI) lis :
s ?B%M;MWMMMMMWMHHnmosm:wu it is much similar to Ooww%rs_h ﬁM w:wm
b omwwaw for distributed components. RMI allows components
Java stan

idi n other physical

Java fo communicate with other Java monoumﬂaMMmﬁMw%o: ?omﬁ%inm
machines. For this purpose RMI provides a m.mm_”o WNMER similar to what
interface (APT) calls, as well as the basic 1n mm‘ T
CORBA’s ORB provides. ; el =

ooww,P cmMm TIOP as the protocol for communication ,@mwimmwﬂmmww
across a network, whereas the early versions of E,.B used ﬁmowmosmér
Method Protocol (JRMP), which performed the same task m.ﬂ,w 1.m E.é i
the latest versions of Java now support IIOP for RMTas well; ; M.ouu.cmgwmu
now have [IOP as the underlying protocol for communicatl
distributed components across a network.

Both, RMI and CORBA, are similar in terms oon.nn_%
es of components — stubs and skeletons. A stub is a client- e
Vhich is o representation of the actual component on the server &

i : nt. It has t0

m: Nra client machine. In contrast, a skeleton is a SErver no“mmwm s Rl
Wi iti is mean i

. M.Www the fact that it is a remote component. This m e e, Thisisthe

i its s€
Same ; “Sponding to other components that request for %ﬁwrmmw e & et
i . : . ,
Qso_owﬂ%maa,_EEoBoEm:o: concept. The beauty - terfaces. The Java

ey does not have to write the stub and skeleton o ample, SUPPOSE

Eﬁaﬂsamﬁ generates it once the basic class is ready. M”u Mo.a.nr for a specific
~m - - H.

®corg A 8earch class written in Java that allows the use

5. A
} : search class.
Spegj trom 4 database. Then, the developer has L0 %EM.HMM for this class.
! compiler can generate the stub and skeleton inter

(R.GPYV., June 2013)

m.‘ RMI has two
side component,

= 124 Software Architectures
= Software Architecture Implem ,
RMI is the Java version of . _ . plementation Technologjes 125
Remote Procedure Calls (RPCs). Glient Components Server gy (i) Having obtained a reference to the remote ¢ omponert,
The basic infrastructure of an "Poney || a remote method of that component. Suppose the componen mua :
RMI-based system looks similar o & J called s getAuthor, which expects a book title as the input and MEE
to an RPC-based system, as maaﬂmi pame to the caller. Then, this method can be invoked as mozosmsam
i o u @ =
shown in fig. 3.26. . Stub 5 Enm :>=z‘_c_. = —.nm..maﬁmrﬂwro_.ﬁ Freud for Ummmgmmm.d.
i ISV RM 2 Shelet i 4
m:ﬂmﬁp_,m WEM@%%%M@%WW WWM% I EES_ This method would accept the string passed as book title, call the getAuthor
Com osmha oW: :o 1l ESH thod of the remote component and return the author’s name. This returned
mm_ian first. The MM\N mon. - JRMP/IOP am_% would be stored in the variable uAuthor, and can be sent back to the
. 1 va . g ik &
. g) ter using JRMP or ITOP, which, in turn, v :
o use the JRMP/TIOP protocols Fig. 3.26 RMT Ayc hitecy 8 caller's nﬂwmwmﬁo? & ses TCP/IP as a basic
for client-server communications. Whenever any compo ’ w.m nethod © 0] . : . ;
services of another component, the caller must POnEnt wants fo ye Obviously, from the above discussion, the RMI infrastructure is very
components to be used. The imian of ESMm oEmE. a reference ¢, En gmilar fo CORBA. In fact, an e-commerce architecture based on RMI would g
€ 1 explained below vy m” look very similar to CORBA based architecture. :

ent would be a Web browser that supports Java. There would be
a Web server and an application server. The interaction between
Web server would continue to be based on HTTP. This
g of HTML pages and applets from the Web server !
lets are downloaded to the browser, the 5 _

example —
Suppose a client component want i The cli
: s to Invokes a server-sj :
-side -
MMH WMHW Moﬁowwgwmndan that allows a book to be searched H_M_.Mawoﬁa ﬂohﬂﬁﬂ and the
wing steps — ; e
(i) The client has t . results into the downloadin
This is similar to declaring an i ﬂ s s variable of type SearchBookSerye; |to the browser. As soon as the app
B iR ons HﬁBomwu ﬁmwmm_, <m.nmEP when we want to use that integer - applets would take charge and invoke th
: s that the client component has to declare a variable | components using RMI. The client applet ¢

! that can act as a refi
, would be done S;m Mwnoo to a component of type SearchBookServer, This | “ithout worrying about their plmenalion dont
. s statement obtain a reference of the remote object and then they ¢

SearchBookServer ref = null; belonging to that object as if it were a local method. This is

EmEWMMWMM:wMM MMOWMMM that the variable is not pointing to any objectin Web

called as ref’is created. Eoémo,\wﬁ“.zﬂ:%o_wmn@g.ﬁg s ..umma side, avafl wmn_.ﬁ_wa 2 e o . P

have told the Java system th oy mﬂ_Bmu ey Serving iy p n%%o.? . .

| SearchBookServer. ﬁww 1 i omu.v in future, point to an object of fype —

| on the client. mmnn.o EMN: ! :.msw an interface of the SearchBookServ s,n_.am
that S omao?woowmmamoﬂ i mo:nw:Q would have no problems in :bmﬂ.maaam HTML

) the client as well. class on the server, whose interface is available 0l Java applets

Tequires

e remote methods of the server-side
an invoke the remote methods
All they need to do is to .
an invoke any methods
shown in fig. 3.27.

ii i i
(i) RMI provides certain naming services to allow a client to ew_moh
e. Jus

about a .

P MMBHMH MM_\M“o:oE. It _m, similar to a telephone directory servic %

address, here, the amq 2 person’s telephone number based on the :mamsﬂg

its full cﬁhmu: P ming service accepts the component’s name along i3

needs to be used ,E:E s areference to it, For this, the Naming.100kuP wﬁ_.%%

to the object bei . This method accepts the URL name and returns 8 o
ing remotely referred to. This is done by the following sla

emet
ref = :
| ngﬁzm._oo_ﬂ_v (“rmi:/ \Eé.:d\mn?mhooa\mawmnormo cwmmimﬂ

, ”
] pitecture in Detai
) Fig. 3.27 RMI Archt

126 Software Architectures

Software Architecture \S_Emamim:.c: ._.mnaaoa@,m ;
s 127

.60, Explain the concept of CORBA.
0. P pt of ®.Gp),

(ii Infrastructure Services — It includes service elemenis th
at are

Or PR el < .)
ol b A Wehg 0 d RB, such i s
Write short note on CORBA. ‘1 mm..o%h/ ’ ® Q. e ~§_, ity coupled to the QIR as security, interoperatibility ang Messaging
: (L -GRy, s,
.\:.a.. ﬂrnxno:zﬁ.os Object Request .wu.o,_aﬁ...?.o_:anaa g o artiee® (iii) Task Management Services - It includes services for :
specification. It specifies how components can interact With e A_ i puted object events and transactions, Mmanaging
L ac il DB ﬁ:m:‘._

network. CORBA allows developers to define disgpr ot

g ; Wil by & (iv) System Management Services — It includes basic p—
: , 3 Ut _ - 8 for
architectuzes without considering about the z:a@aﬁ_wm..zmggﬁ > o_ésg” abling the management of metadata, licensing and object life cycle
HEES_nm Ly .

mamﬁ_.omﬁ:désmE:mzmmmm.Hrmoo_stosm_:mms OO , . .
language known as Interface Definition Language @%me; ag_sa_ﬁe 0.62. Explain the architecture @wqaxﬁ in brief. (R.GPY, June 2014)
o {8500 ” .1

independence. Developers can write the actual interm)] "

In a programming language like C++, Java, and Oowoﬁwﬁm.&, the SEE,H_M__H_ Explain CORBA architecture. : (R.GRV,, June 2015)
EOEM,MMH%M@%W.MWM%”@@ t%:o:uwm of :Mm;unww 15 used in qp, ; J Explain CORBA architecture. Also discuss about its components
g g language independence. An-interfacs j5g oo =Oeithi - ‘ .

s O i : set ; (R.GPY, June 2016

methods that signify-what -that interface can do ie., the _u._mﬁ_wq m.gzgaf y mm_pm architecture is designed to support the role of an bc. ﬁm “

i €., aviour gy ns{ Th object reques

Interface. It-does not contain the implementation detail
mwmddm understand this with the help of mwiml,.rgﬁmu
@wwm we buy an audio system, we do not worry about the interna]

' ¢ Interna th : e
mz.ow as m.uo. electronic components, the currents and yoltages need e are used when the remote interface of the CORBA object is known at compile
with them, etc. Instead, the Emucwmogm_. provides a s mﬂ ofi anm M%ﬁwzﬂ” fime, enabling client stubs and server skeletons to be used. If the remaote interface

: can press a button to change the volume. to ski o cicitay] ® MOt K0 y s o § ‘o s
. to skip a track, and to ¢ is not known at compile time, dynamic invocation must be used. Mos

Internally, that translates (o, B GcriBiine A1 i 1 . ..o &8?9.. programmers prefer to use static invocation because it provides a more natural

_ - at the-electronic compora programming model. Fig. 3.29 mroiﬂﬂ_wca main components of CORBA

level. This set of internal o i : : g
: Inal operations is referred t o PO f
llustrated in fig. 328 m s HEEmBm,Em:o:. Thiss architecture wihieh are as mo:oimu

H proker that enables clients to invoke methods in remote objects, where both
m, dlients and servers can be implemented in a variety of programming languages.
CORBA provides for both static and dynamic invocations. Static invocations

5 Le, how it i dog

=B v Actual Interface
External Implementation|. Repository .
| World (3 ~ Yolume + fe——od in Terms of ; B < =
r\ Eserof. - T | Request -] i
{ | theAAudio — Voltages, 33 E i
Lo Systenn) Skip Signals, i Reply 15
Current, - F\\ : ,
_ Eject ete. L | or Dyramic Mrm_n:._E.IJ
Interface Implementation Fig. 3.29 The Main Components of the QQ@A&EERQE@(_\ Hn.)
o . o i< similar to the communicalio
Pen Fig. 3.28 1, nterface and Implementation [il{ mod WM,Q QBT Core—Tharole o?.uww noMMmmhM%wﬂwoﬂ.anm an interface
[61. . A ; 20} "°dule of remote invocation. jIn addition, a0
4 Wi services of CORBA. .@..Sf N m«h. GRV. I 1| "t includes the following E d
ns. There are ’) tegOriZe ; S started and stoppec-
follows .. a number of CORBA services that are a8 (a) Operation enabling 1t B%M%aaca oEmﬁawma%%Bm

(b) Operations to convert be

ol o ;
. . ~ =nE m:._ﬂ X ests using
basic wmQ.@ M 3 Tialin Management Services — This om_nmoQ:m_%._.ﬁm . (c) Operations to provide argument Jists S
1C€s for manipulation o fsuchse™ c) Opera
a leso] dynar: . .
and retrieval of data. Examp d <ol Ynamic invocation.

are properties, relationshj
. ; nship, query, externalizati istency a7
o prop query, externalization, persi %

128 moﬁ_\mwm Architectures .

_ (ii) Object Adapter w The role of an object adapiey ;
gap between CORBA objects with IDL interfaces ang :55_ to b,
language interfaces of the corresponding servant o_mmmam.ﬁ.»: E.aw;
has the following tasks — oe._me
(a) It creates remote object references for CORp
(b) It activates and deactivates servants, 2
(c) It dispatches each RMI via a skelgfgy, to
servant. {

An object adapter gives each CORBA object a unique object
forms part of its remiote object reference. The same name ig useq Mmsp.s__a
objectis activated. The object name may be specified by the app __.Smwor fimg,
or gencrated by thé object adapter. Each CORBA object is _.am_.ﬂnaﬁﬁg
object adapter, which may keep a remote object table that Wi
CORBA objects to their servants. Each object adapter has jts OWN name,
also forms part of the remote object references of all of the CORBA o_w_s g
manages. This name may either be specified by the’application E%_,M_”w :
generated automatically. 3 g

[(Gii) Portable Object Adapter — The CORBA 2.2 standard for ot

X

§$
cg.gﬁ

adapters is called Portable Object Adapter (POA) because it allows applicatos|

mum. servants to be run on ORBs produced by different aoé_o.un@.g_w

: .mnEmﬁ.a by means of the standardization of the skeleton classes &d of b
Em.mnmn:oum between the POA and the servants. The POA m._.ﬁ?.im CORB!
objects with two different sorts of lifetires —

. (2) Those whose lifetimes are restricted to that of the s
their servants and instantiated in. It has thé transient object references.

. . (b) Those whose lifetimes can span the instantiations of seryit
1n multiple processes. It has the persistent object references.

@E Skeletons — Skeleton classes are generated in the _mum%mn_a
the server by an IDL compiler.]As before, remote method invocations*
dispatched via the appropriate skeleton to a particular servant, and the m__a_,,nu
unmarshals the arguments in request messages and marshals exceptions

results in reply messages. o
1 () Client Stubs/Proxies — These are in the client _%m:m_mm%
w ass of a proxy ora set of stub procedures is generated from an _.D L __ﬂ_ o
Y an IDL compiler for the client language. As before, the client stubs/P"™

Bmﬁ&mw the arguments in invoeagiopn requests and unmarshal exceph®™

results in replies. ‘ .
ol

tation rep M%A

(i) Implementatiop ing==
w.O_. ~0nm=bm 2

itory — An i en
responsible Repository — An implem

for activating registered servers on demand and

By

hen €

Y .
J_ﬂ%ﬁ_:m

m%a.‘m__w

_».H._m mﬁE.cEmrI

aps the Dag E.o&mm

Software Architecture Implementation Technologies 129 -

—_— ently running. The object adapter name is used to refer 10 servers -
hat & gistering and activating them. An implementation Tepaository stores a
from the names of o&mﬁ adaptersto the path names of files containing

plem entations. Object implementations and object adapter names are

registered with the implementation repository when server programs
stalled. When object implementations are activated in servers, the

N-M "V ame and port number of the server are added to the mapping.

o :

_Bﬁ_aamaﬁ._o: repository entry —

o_u.wmnﬁ im

Pathname of Object
Implementation

Host Name and Port

Object >&.Em.~.
Number of Server

Name

(vii) Interface Repository ~ The role of interface repository is:to
information about registered IDL interfaces to clients-and servers
that require it. For an interface of a m?.ou type it can supply the names of the
methods and for each method, the names and types of the arguments and
exceptions. Thus, the interface repository adds a facility for Rmanmon to
CORBA. When an IDL compiler processes an interface, it assigns a type
identifier to each IDL type it encounters. For each interface registered with
it, the interface repository provides a mapping between the type identifier of
that interface and the interface itself. Thus, the type identifier ofan interface
is sometimes called the repository ID because it may be used asa keyto H.Uh
interfaces registered in the interface repository. Every OOEW.PHBH.VE object
reference includes a slot that contains the type identifier of its _Eau..mmnm.
enabling clients that hold it to enquire of its type with the Eﬁ.mmn..n _.%omme.w..
Those mﬁﬁ:nmaonm that use static invocation with client proxies N.Em IDL
skeletons do not require an interface repository. Not all ORBs provide an

interface repository.

viii) Dynamic Invocation Interface — X
interface M:o,“m ommnﬁm to make dynamic invocations on EE.oﬁ Oowwmw %.M.mw
Itis used when it is not practical to employ proxies. The client nﬁﬂn Mm N,M_._mzn
the interface repository the necessary information i wﬁocnoumﬁ_gmu
w.on a given CORBA object. The client may Us¢ this information

invocation with suitable arguments and send it t0 the =
necessary to add to 2 Serve

was compiled.
CORBA object whose interface ¥ . ben ﬁ”mﬂﬂou the interface
Ifaserver uses dynamic skeletons, then it can accept :%wg a dynamic skeleto?
b CORBA object for which it has 19 mwo_nazw the request t0 discover 1tS
feceives an invocation, it inspects the contents © ents. It thed invokes e -
target object, the method to be invoked and the argum
larget,

The dynamic invocation

server.

(ix) Dynamic Skeletons — 1t may be
vas unknown W

. 130 Software Architectures

(x) Legacy Code — The term legacy code referg
that was not designed with distributed objects in ming. A pie
may be made into a CORBA object by defining an D1,

ce 0

tin
L
. g P E . m—:ﬁu.muﬂﬁagc%naﬁ
providing an implementation of an appropriate object adapy ace ", W

“;Oﬂ. 1

er it

skeletons. Ad the __aggwg
1y

Q.63. Discuss Object Request Broker (ORB) in the CORp Y

Ans. The Object Request Broker (ORB) is at the i ow@%ﬁa
components architecture. ORB is the glue that holds the distri, nﬁ__mag__g
together. ORB is actually a software program that Iuns on the o:a”,& Objeg,
the application server, where most of the components reside, 14 i B Welly
for making the communication between various distributeq oc._.mﬁw%oa._gn
ORB does two main tasks — ‘ Possibj,

(1) The ORB locates a remote component, given jtg Teference

(i) The ORB also makes sure that the called methoq Teceiveg
parameters over the network correctly. This process js known ag snisa.i
In the reverse manner, the ORB also makes sure that the calling stgnw
receives back return values, if any, from the called method. This Processi
known as unmarshaling. Marshaling and unmarshaling actually carry out the

conversions between the application data formats and the network data format;,

This process is shown in fig. 3.30. The client is not aware of thes
operations. Once a reference to a method of interest is obtained, the cliea
believes that these operations were performed locally. Internally, ORB handles
all the issues. For this reason, some portion of ORB is resident at all the clieas
and servers participating in this method. Whenever a client wants to executes
method of a component residing somewhere else, it ‘only requests its loal
ORB portion (called ORB client). The ORB client makes connection to i
appropriate server ORB, which in turn locates the component, executes E
method and sends back the results to the client ORB. However, the it

believes that it was all a local operation.
Component A E

Fig. 3.30 Component Calls an Insert Method
(i) ComponentA calls the Insert method and passes tWo
a, and b to this method.

* (i) The ORB receives this request and realizes that .Eo EMQ "
is defined in component B. How does it know this ? For this ﬂM L
whenever a CORBA component is created by a developer, it is 1€&

Eqma%a

mm_U_m‘
d 2_.5

Software Architecture Implementation Technalogigg Sw

m. Therefore, it passes the method name and the

_ %mn_::m mwﬁw% (i.e., marshals it) across the network to the ORB g
it foc® sin pinary nent B is located. This is shown in fig. 3.31.
nete ompo

Component B

..1011010110..

., 3.31 ORB Forwards the Call to Its Counterpart
fig= the ORB at component B’s end receives this request and
Now tne

.. amﬁmvmnwwao#mol%:m_ ﬁoadﬁ.‘m.,ﬁuamarm:cm Em,
converts the c_ﬁ.uwwﬁ:% it needs to call the Insert method of ooE@czm,E w.,é_»r
quest)- It rea Emba b. Therefore, it calls .&o Insert Bm&&“ passing it E.o
purameters as mEnﬁam. The Insert method is mxaoﬁon and its return value is
%@awnan _umwwm running on the same machine where the called component

aeaaamuo
“ Component B _

p resides. This is shown in fig. 3.32.
Insert AN__ UVA retarn

3
5 . L_ome 1.

Fig. 3.32 Actual Insert Method Gets Called

(iif)

‘| Component A

nt
itinto binary data and sends it across the network back to the ORB at compone ‘
Asend, as shown in fig. 3.33. ,

Component A

Component B

..11110110..

I

Fig. 3.33 Called ORB Returns Results to Calling OiB

s end receives th.s binary data,

(V) Finally, the ORB at component A’ e\t A, as shown

OIVeIs it back into the original form and gives it to COMpO

Mlig. 334,
return
s . ol Component
:m. 4 0&:.:% ORB Returns Results to the Original 1P .

) -

is ris
(iv) The ORB at component B’s end takes this return value, converts

132 Software Architectures

Q.64. Discuss Interface Definition Language (IDJ.)inCQ RB,4
Ans. IDL specifies the interfaces between the - n&%ﬁ;ﬂ
components. IDL ensures that CORBA components can mio_.m:.m noE;
other without regard to the programming language useq. L wigy Gy
When a component is interested in invoking a methgq
component, the calling must know about the interface of the calleq ooﬁ Angip,,
As we know that IDL is used to describe the interfaces of CORBA aoosuggﬂ
Thus, it does not matter in which programming language the ok H_,%c:g_h_
actually written in, it has to expose its interface through ID] . waoaﬁ%osma. i
world’s perspective, it is IDL interface that is seen. FﬁEm:ﬁ it nomsoczaa
may be implemented in any language. Therefore, a CORBA SE@SMEE
expect every other CORBA component to €Xpose its interface using Eﬁ Cay
Consider, for an example, an interface called as StockServer, a&.sn.g_
IDL, that provides stock market information. The StockS g
expected to run at an application server, therefore, the na

@225838 __m
i ; TMUNg Conventioy
identify it as a server method to make it more read

goEanmm.

able. The interface COontaing

() The getStockPrice method returns the current stock price of 3 |

particular stock, Ummm.m on the stock symbol it receives. It takes one inpuf
parameter as a string. It has no intention of changing this parameter, and hence,
it is prefixed with the word ‘in’, which means it is input only. This method
- would return a floating-point value to the caller. i
(i) The getStockSymbolList method returns a list of all the stock
symbols present in this stock exchange and does not expect any input parameters
indicated by empty brackets after the method name. The return type is sequence
<string>, which means a list of string values. :
A portion of the IDL definition for this interface is as follows
.. Interface StockServer
{
~ float getStockPrice (in string symbol);
sequence <string> getStockSymbolList();
[

. ; ins can
The actual code for this interface and the two methods that it contal

: : Q:nan
be written in any programming lan guage such as C++, Java, etc. Any oo:wm liob
calling the StockServer interface would not bother about its impleme

aller’s |
and therefore, its programming language. Consequently, the

:Rm

; ; . impleme™ |
implementation can be in say Java, whereas StockServer could be imp o

. inter
in C++. This is fine, because both would have their respective external 10 v
defined in IDL, which does not depend on either Java or C++. _

fware Architecture Implementation .ﬂmna:o_on_.mw 133
So

[nternet Inter-ORB Protocol (IIOP) in CORBA
;...m.h:.mm.
fure: ORBs noan::moma.s_#w each other using the Internet Inter-
CORBA The early versions of CORBA were concerned only
JOP). onent based applications; that is, a component
ﬁ@o ported to machine B and mx.mo.:ﬁoa .Eﬂw.
ot was to remain on machine B where it is desired to
B@onwm m machine A, there was no standard way of
gcll pES M%mmm various nodes. Obviously, HTTP had not cman
e jcation b different protocol. Thus, the actual implementation
ped mc_ communication between these components was
wﬁmm Mb those days. Hence, although components were
QMM Mﬁonomnnmzo. It means that there was no standard

nents to interact with each other.

itk of the stan
portable; they were o
. 0
mechanistm for mow% . ent A wanted to call a method named as
: le. if a calling compox ; e <
R ther component B residing ona different computer, there
qum belonging to m:% t this would be possible. This happened because there
was no guarantee that tht for a component to remotely call a method of
was no standard mechanism the same physical
if the two components were not on
other component, 1 tocols passed the
uter. This could lead to problems such as some pro . "
computer. ioht, others from right to left, some nouma@.mm the
e o kb lowe ign bit as the last bit and so on.
sign bit as the first bit, other interpreted the sign bit a: e s ot
Therefore, remote distributed noBﬁoumuTcmmo.a compu mmo:Eoum
standardized. Some vendors provided this feature with propretary e &Eu.
Consequently, the solution provided by one vendor was not ooE@M il e
another. Therefore, even if distributing components and _,..wob a e
‘ommunication between them was possible with some Eo@:a_gw mmmm.oanw
this would not be compatible with another set of components that use mwm e
Yendor’s solution, Tn essence, if the calling and the called componen o
o0 the some machine, only then an interaction between them was guara -

,Emamoﬂm“ the next version of CORBA came up with TTOP. g cmwamhw
nadditiong) layer to the underlying TCP/IP communication Eoﬁ.ono_. >: OE H
WM this additional CORBA messaging layer for no_Eu:a.nﬁEm S_M_ M_ mMH
mgwm. Thus, every ORB must provide for IIOP stack, just like every _.o

Web SCIver on the Internet must provide for HTTP stack. e T
p) s_waomsmn HTTP and MOP both use the Internet E@mmqsoeaom_.m;ammcm
tha E:_.a gﬁ&o:ﬁ they can exist together on the same :ngo_.mr. T
lop M.Eﬂmomo: between a client and the server can be %.B: Web pages,

' Hence, HTTp would be primarily used for downloading

Wplgg . for the
Pletg angd Images from the Web server, whereas [IOP would be used for

poi 8 P!

S
o - W
134 Software Architectures =
component-|ey s o
OO%wV level communication between CORBA clients usuall
servers usually ¢ eyl
- om - icati Ppl
application server This VM - POy _um.mma applications _.E_as_ “Sang
, L. Situation is shown in fig. 3.35. & on g,
. 1. Request for
wnrai an HTML.page| [== Web
l'.lll..l['l
, TOwWSser 2, Send - - server
HTML | :
== :wmmlmllll.l B ———————\
Send Java §- L = —
D ﬁu. Load applet . D Ry : — >
applet =11 “Applets ~HTML
L H iaxe| pages’
; e — 6. Invoke the
= || lApplication et
=] umﬂ.énn. called:component
Wnﬁ&maw 9. Results & Business
B R =\ Components
ORB 5. ORB-10-ORB| L= =
call —— E e 1%,
Iiop
8. ORB-t0-O
_.nmEmmHMcn.. EMW Na >._M ﬂwu_ TP
etho D :
processing BhE Monitors

Fig. 3.35 Use of IHOP for OR-t0-ORB Communication

In this figure we will realize that in steps 1 and 2, there is an interaction
between the browser and Web server by using HTTP for requesting and
obtaining HTML pages and Java applets. In step 3, the client invokes the Java
applet, which in turn, invokes the services of one or more business components
on the application server using the CORBA ORB. Note that it uses IIOP and
not HTTP. The business components are shown to interact with databases and
Transaction Processing monitors for server-side processing.

0.66. When CORBA already exists, why is RMI required at all ?
Ans. The reasons for this are as follows — :
(i) CORBA is a standard. Developers using Java or any om.,
language can implement it. However, RMI is a part of the Java programming
language itself. That is why, RMI is tightly integrated with Java only. :
(i) The aim of the Java creators was to have a ?:-:mﬁwwwo
_uuomﬁmbwé.:m language that is platform independent. That is, they J\.N_M:oa.
support maximum functionality that is required for all types of app _onmznu
Since remote method calls is an important issue nowadays, RMI was per

er

e

as a necessity.

|

Software Architecture Implementation ﬂmnzzokon,. 1
es 135

) (R.GPV, June
Ans. Unified Zomorzm _Lmsmcmmm (UML) is a language used to naNEe
pstract system scenario, by visualizing, specifying,
m_ ooca,.mss.:m various parts and components of the system
nodel enabling software system development. UML

0.67. Write a short note on UML,

ate an
- Constructing, ang
1nto a representative
has its syntax ang

semantics- It provides a set of notations, such ag rectangles, lines, ellipses
elc., 10 create models of systems that would be usefy] in aoo_._BmE..mw‘mmmf

Jesign and analysis results.
The main goals in the design of UML are as follows —

(i) Offer users with a ready-to-use, expressive, and visual modeling
language to create models. .

(i) Offer a language and notations to enhance concepts to Jigher
order representation. .

(iii) Do not depend on OO languages.

(iv) Assist higher-level development concepts such as component
technology, rapid application development, reusability, interoperability, and
portability.

The following benefits are provided by the UML-based modeling -

@) " Enhances communications among project teams.

(ii) Enhances the developer’s insight and visualization of the
complex system. ‘

(iii) Developers learn faster to include the system’s intricacies
properly in the design. .

(iv) Prototype design is more suitable, where the specific .noBEemQ
of structure and behaviour is taken into account in each iteration. This enhances

the system in increments, and part by part. < -
Q.68. What are the different system views that can be modelled using

p tur
UML ? What are the different UML diagrams which can be used to capture

each of the views ?
Or

Explain the use of UML for object-
or

_ .)
What are the different systeit VIEWS tha

oriented design-
(R.GPV., June
using UML?
June 2015
dels) to

2010, 2011)

can be modelled
(R.GEV,

ing Vi mo
csented using following views (

Ans. In UML, a system is represe ectives —
describe the system from distinctly &m.m_.m:h ﬂ“w&« functionalities P
i« view de
:] View— This VieW
(i) User Mode

by the system to its users. _d

rovided

o
5...#_" .

}

S
136 Software Architectures
(i) Structural M odel Vie is vi
.) 'ew — This view represents th
the problem in terms of the types of objects r PR %
of a system and to its implementation.

?t Behavioural Model View - Thig view represents the interact;
between various objects to realize the system behaviour, e
(iv) Implementatios

t Model View — This view r
Structural and behavioura| asp

ects of the system because they

(v) Environment Mo
and behavioural aspects of th
implemented.

CPresents th,
are to be byjj;
del View — This view represents the g

. - . Hﬂl_.uOEHm—
€ environment in which the system

Mm to _um

Fig. 3.36 shows the different

UML diagrams which can be used to capture
each of the views.

Behavioural View
Sequence Diagram
Collaboration Diagram
State—Chart Diagram
Activity Diagram

Structural View
Class Diagram
Object Diagram

User’s View
Use Case Diagram

Implementation View
Component Diagram

Environmental View
Deployment Diagram

Fig. 3.36 Different Types of Diagrams and Views Supported in UML

B

' SOFTWARE ARCHITECTURE.
| ANALYSIS & DESIGN.

B

PRI O

SR]

]

/ARE ARCHITECTURE ANALYSIS AND DESIGN -
MENTS FOR ARCHITECTURE AND THE LIFE-CYCLE

N o i

RCHI

Y

CTURE DESIGN AND ANALYSIS METHODS

2 S

|

0.1. Describe software architecture analysis and design.

Ans. Software Architecture Analysis — The m.wm: .ﬂﬁﬁwmm%oﬂwm
architecture analysis is to learn m@oﬁ Em. system to be vm: %\ M_E s
architecture. This kind of analysis requires E%@Emwﬁw s e
architecture and the system to be built. The .mooEmow_u o v
analyses are very dependent on how ambiguous mmnrwno_mwa i
mappings, or semantics, of the elements of the software arc
are today very unclear. i

,E__M mnmmwmmm of software architecture for the EMNQMM “ﬂm@ﬁmﬂm oo g
system that is going to be implemented would wwumaan e i
universally defined semantics of a software architec oAy 5

Software architecture has much impact on the e% Nwozm el
and it is important to be able to Bm_ﬁm EHa.o:ﬁQw mMMBu eking regprding
software architecture in a number of situations.
so hitecture includes — .

ftware ﬂ.vo Compare two alternatives R_MMMM MWW oftware architecture relatively.
(ii) Compare the original ga%a.n cture with the requirements:
(iii) Compare one software ﬂoE mm 10 a theoretically viable software
(iv) Compare a software architecturt

architecture, or cture on an interv

it
(v) Grading the software archit is the software arc

. ; ”
: informalion 15 ° = ot techniques ¥
An uaﬁonmﬂw source of Em%.m,nnnmﬂdmn_ Jecisions

itecture us !
and Gux mbm.J.wam the software m.nowh_m%mnm make more In
information that allows the stakeho
the situation.
The analysis take
aowmwmmﬁ detailed desl

al or absolute .mnm_n.

hitecture iself,
¢ gather
about -

t that when

: un
e into acco very modu

gn is done 01 €

el
=

138 Software Architectures

implementation. This is a source of variation in what could pe &
the implemented system. For example, a brilliant team of womsmw i
may still be able to do a good job with a poor software E.nr:mm Cngi
perfect software architecture may lead to unacceptable results iy EoEa.
team of inexperienced software engineers that fails to understapq Ea :ms.
~ behind the software architecture. m_.m:

Software Architecture Design — A software architectyre des;
implies the definition of two things. First, a Pprocess or proge a:&mm. Methyg
about the included tasks. Second, a description of the results or type oom 8oing
to be reached when employing the method. From the software mar.ézg
point-of-view, the first of the aforementioned two, includes the momh%%a
specifying the components and their interfaces, the R_m:osmE@.m vm%m of
components, and making design decisions and document the Tesults to pe een
in detail design and implementation. The second is concerned with the %m:%&
of the results, i.e. what is a component and how is it described etc, 3

Object-oriented methods describe an iterative design process 1, folloy
and their results. There is no guarantee that you will reach the %E.E&&%
from following the prescribed process. The reason is that the Processes
prescribes no technique or activity for evaluation of the halting criterion f;;
the iterative process, i.e. the software engineer is left for himself to decide
when the design is finished. This is both from a method perspective and from
a design perspective, msufficient since the stopping criterion relates to whether
or not the requirements on the design result will be achieve :

Software architecture is the highest abstraction level at which we construct
and design software syste

ms. The software architecture sets the boundaries

for the quality levels resulting systems can achijeve. Consequently, software

architecture represents an carly opportunity to design for software quality
requirements, e.g. reusability, performance, safety, and reliability.

The design method must in jts process have an activity to determine if the

- design result, in this cage the software architecture, has fulfilled the requiremen’s

We only consider design methods with such an activity as considered complefe

0.2. What is a software requirement ? What are its objectives ?

Ans. Requirement js 5 condition or capability possessed by a momé%“ .
System component in order to solve a real world problem. The problems na
be to automate a part of a System, to correct shortcomings of an existing systefl
to control a device, and so on, IEEE defines requirement as —

. .. or
(1) A condition or capability needed by a user to solve a proble”
-« achieve an objective.

:@5
Or,
as.m
S_m_m

. .. ‘ % _u b
(1)) A condition or capability that must be met or ﬁ%.%mmwm%.wa

system or system component to satisfy a contract, standard, specifica
other formally imposed documents,

& 55.

AT

Software Architecture Analysis & Design 139
(iif) A documented representation of a condition or capability ag i
_3 or (i)- T .
Objectives — The objectives of software Tequirements are as follgys _
(i) To introduce the concepts of user and System requirements.
(ii) To describe functional and nonfunctiona] requirements.
(iii) To explain two techniques for describing system requirements,
Q& To explain how software requirements may be organized in a
requirements document.

0.3. Discuss the role of software requirements ?

Ans. Software requirements serve two major roles in a development effort.

They specify what to develop and when the awﬁmo_ﬁﬁ: is completed. >
irements document has all the software requirements of the system that is
HEMH developed. It communicates the customer’s needs, wishes, Eﬁ
Mwnnmﬁmmocm to the developers of ﬁm system. A ﬂ@cw@EmEm. aonmﬁnuw HMNM
also have descriptions of the required noﬂvzﬁnom& Enﬂ%um JM&MM e
system behaviour, guidelines for the user interface, »o,nw.Eom aspe
hardware/software interface, and operational characteristics.

The second role of sofiware requirements is to form Em .cm._mm wm.a ﬁmﬂmmm_awwm
- when the software product is to be completed. The <mﬂmowco= Mmqm M@ -l
functionality against the requirements document mSnM to _mHMWm e
contractual agreement between the customer and the EMMM e e
and generally implies the end of the améuomamauﬁ. phase. e
need the construction of test situations to objectively prove . A
products comply with the requirements document.

: irements ? -
Q.4. What are functional and non-functional requirem

(R.GPV, June 2016)
ar rements.
i uirements.
Compare the functional and ..S:.\zagc:& req (R.GPV,, Dec. 2010)
. called
ional requirements, also
Ans. Functional Wmn_.m_.mEm__alﬂw@ functional req at software

; ices th
3 jonality or service
behavioural requirements, describe the fonetioe Lt

. . m
i irements describe the Eﬁaononﬁ M_
should Eoﬁam..mﬂ %Noﬂﬁﬁﬂwuﬂ Mnmm_.wao = .Em E_UMW %MMMMMMHM_MP
.momém:.m park; ,m:S:o:m that should not be include iy Eonm%.a - ...
EH%&@.F and the mEow functional requirements %mw B i
z.a. services Eosanﬁw W.\E react to particular EE:W w_ ek st or
s..w_n_.w :6 wmmmﬂwmwmm msozon requirements as
E.:m:o:m.l

erform.
component must be able t P

11
¥z

140 Software Architectures

Consider for example the functional requirements of an onlip,]
system — |
(1) The user of the bank should be able to search the desirey
from the available ones. Se
(ii) There should be appropriate documents for
implies that when a user wants to open an account in th
be available so that the user can open an account,
(iif) After registration, the user should be provideq
acknowledgement number so that he can later be given an g

JE__W _
Vg

0 rey :
e bank, (he mo:h.cw”_m
5t

Wwith a up

Count num,
These requirements indicate user requirements and specify that fungg
requirements may be described at different levels of n_o_m&

System.

ique
Cr,

3 ; Ong|
M an onlipe t, mangm

The functional requirements should be complete ang con
Completeness implies that all the user Tequirements are def
implies that all Tequirements are specified clearly without
definition. Generally, it is observed that completeness and consistency canngf
be achieved in large software or in a complex system due to the errors thy
arise while defining the functional requirements of these Systems. ‘

Non-functional Requirements — The non-functional requirements, also
called guality requirements, relate to System attributes such as reliability and
response time. Non-functional requirements arise due to user requirements,
budget constraints, organizational policies etc. These requirements are not
related directly to any particular function provided by the system, ;

Non-functional requirements should be accomplished in a software to
make it perform efficiently. For example, if an aeroplane is unable to fulfil
reliability requirements, it is not approved for safe operation.

Different types of non-functional requirements are shown in fig. 4.1.

Sisten;
ned. Oosmaag

any oouu.m&oaq

* Delivery
* Implementation
* Standards

External

Organizational
Requirements

Requirements

Non-functional
Requirements

’ HEmSvE.m_.EQ
* Ethical
* Legislative

Efficiency
* Reliability
« Portability
Usability

Product
Requirements

Fig. 4.1 Types of Non-functional Requirements

&

Software Architecture Analysis & Design 141

Write short note on domain requiremens,
0.5

equirements which are derived from the application domain of a
Ans. R ga from the needs of the users are called domain requirements,
gysterm Emﬁmwam:a may be new functional requirements or specify a method
These redt me particular computations. Moreover, these Tequirements include
(o perform SO t that may be present in the exiting functional requirements, Itis
any constrain nderstand these requirements because domain requirements
haﬁoasa .8 Mm mentals of the application domain. Also, if these requirements
reflect the Mm_m d, it may be difficult to make the system work as desired. A
are not ful M:M:.H de a number of domain requirements.

system catl . ? isiti tant
0.6. What is software development life cycle model ? Why is i importa

, o
j I while developing a large software product ;
to adhere 10 & il (R.GRV,, June 2010)

Or
| i 7
Explain in detail about the life cycle process. (R.GPV., Dec. 2017)

A life cycle model specifies the different mom.ﬁ.:.mm that mn& ﬁ.o.,g
ot develop a software product and the sequencing of these activities.
B s MMmo _M_w is also sometimes called as the m%mﬂmﬂm nmé_owﬂmwﬁ
dum moﬂéﬁmmbhmv %wmmwom__%u the classical waterfall model is the cmwgmé _cm
_Mmm_m%nm%am_. m<oa.‘. software product starts Swm_u a Rnammﬁqmom”wm mﬂomw . _M
:Nw customer. This is called product na:.n@ns.ﬁ mMMﬁWM&m& e
undergoes transformations through a series of EmuH mm Al
fully developed and released to the ozﬂoEmﬁ.\ymﬂ 2_“ mmwmm b= i e
by the customer and is finally retired when it is no Hoﬂ..wmm i S
the essence of the life cycle of every software product.

e nducts its
iness organization$ co ! :
to software development. In fact, each business orga s. Likewise,

- ed step
business through a certain sequence of well .HMW@E&Q. The software
manufacturing industries use some steps to p BE_onm software development,
e cyele can be viewed as the business ?Mnmmm :MM as a software process.
i le is also often ca i Fat
and therefore, a software life cyc in the life cycle of any
Traditionally, the feasibility study is the fist S2B° © 7 L) i and
softw Sa:nﬁ,,;o subsequent stages __:.“E% = an_mmc_p of these stages is
T . ien, coding, testing and g L e phase, usually several
o o_ mumwo During each life cycle p ik ,Eo duced before
reft a life cycle p : | docume:
%:MMMM_Q M_m%wmmg :mow to be performed and severa

: tic and
is a diagramma
th d of the phase. A software life cycle model 1 cycle model maps
€ end of the phase.

y A life) ot

re life cycle. its inception
descriptive representation of EM mstw%éa proil mw Hw_oﬁwm_m ey map
the various activities conducted © s. Different life cycl€ us, 00

Th
. hase nt ways.
retirement into a set of life cycle P ffere

in di
i e o phases 11
the fundamental development activities to p

1

il /f
i ;:";’i{//;f A(J]J%’f/f’

R
142 Software Archifectures Fm.n.;
matter which life cycle model _.m. :wma the ﬂmmmo m.n:,S.:.am are ingy Software Architectyre Analysis & Design 143
life cycle models, though the activities may be performey in QE‘E Udg i (iii) Architecture design ?.Q Unﬂ:mn design
various life cycle models. o ozaa%__ (v) Implementation ?@. .womn.:m
Software development organizations haye felt that , dh h (vii) Deployment (viii) Maintenance,
iate well-defined life cycle model helps to Produce g, . “teng, | hitecture-centric methods become more Wwidespread, more widely
i ithout time and cost overruns. The main h oy e._m__fa; s Eﬂ d integrated into an SDLC, organizations Inevitably wil] wapg to
and that foo v H_H.o that it enables development of softw. mE»”mﬁ ogr&: as_ﬁ mm%am, - O_ nsequently, organizations that wish to include the eliciting and
= < &m g : Meing _mw%sﬂ,w_s tailor H._aa.m om_@.manga&mm& requirements, explicit architecture design,
et vy = glEniE M,_”@ analysis in their life cycles will be best served if they can do
Q.7. Discuss the life cycle view of architectyre design gpy analyg; mam mSEMMM:w:. The steps and artifacts of the five architeotuns oo e
Ans. Many architecture-centric analysis and design Moty ..as.&é 50 Emmwg ADD, ATAM, CBAM and ARID — .:.5338 may %.& fo be
created in the past ten years, beginning with the software mHEHmMEﬁ besy Emo_d d, blended, and, in some cases, removed S,:a;.\ when the mowsnmm of
method (SAAM), which inspired the creation of other methogs, ,:.ﬁa Anglyg Hn se methods are integrated into an organization’s existing life cycle.
method that we created at the software engineering instityge amamaé_
architecture tradeoff analysis method. . T Wag

As we gained mﬁuwﬂ.gom mSE. the ATAM, we €Xpanded o Teperiy:
into more phases of the life cycle with the mo:oSEm methods— ~ "
(1) Quality attribute workshop (QAW)
(ii) Cost-benefit analysis method (CBAM) 3
(ii1) Active reviews for intermediate designs (ARID)
(iv) Attribute-driven design (ADD) method.
We examine these methods and their relationship to the software
development life cycle (SDLC). .

These methods share not only a common heritage, but also a commons
of characteristics, aside from being architecture-centric. First, they alle
scenario driven, with the Scenarios serving as the “engine” for %ﬂﬁm,ma
focusing the methods® activities. Second, they all are directed by operationi
quality attribyte models. The SAAM focused on modifiability. The ﬁ““
looks at tradeofi among multiple quality attributes, while n.a i am»
shapes design decisiong around quality attribute considerations. _;_Mam:
allempts to elicit ang document quality attribute requirements g

. 3 - Third, ¢
Particularly in the absence of explicit architectural documentation. THI%®

; isions made
methods al] foeys on Qoo:_do::.:m the rationale behind the decisions = it

i . & th el
this way, the rationgje SeIves as a knowledge base on which to cmmnmﬂm_ﬁ_nama
and future decisions, Last, they all involve stakeholders so that m .

fquality are clicited, pr ioritized, and embodied in the m_.%_.ﬁ%anﬂm_%&mw_
‘ » 88 practiced in relatively mature software o

S the following activities — :

8 Gzaﬁmss&sm of business needs and constraints

(ii) Elicitation and collection of requirements

N

S

K

.

4
x

i,

0.8. Write short note on architecture based economic analysis.

3 - ing the
Ans. Architecture based economic analysis is & oc.mam@ on nﬂnﬂﬂﬂwﬁwﬁ
utility-response curve of various scenarios and casting EmbES% ow e
them comparable. Once they are in this common ekl rovement, with
coin of utility — the value of cost (VFC) for each mHEmmoan Hmm ?
Tespect to each relevant scenario, can be calculated any = wwamﬁ.mn&mmm butin
Applying the theory in practice has a ML ow.wBoanouoE_.n 8&_“,._5:3
spite of those difficulties, we believe that E.m .%vrnw:ou o mnunamm s prohs
is inherently better than the ad hoc decision-making .wﬂm%&& the cost benefit -
(even quite sophisticated ones) on_,ww\ ﬁw&x mcwmwwm_ the appropriate tools Mo
1 tells us thal M.HEU 5 g ous benefit
WMWW“MMMNMHA% %W_W%mo:mmmozm and decision making _wmww e
S .
to the disciplined development of a complex software sys

; CBAM).
Q9. Explain the cost benefit analysis Nmm&a.ﬂ%_ﬁm architecture based
lysis method facl for the most part
Ans. The cost benefit ana : CBAM has for
; m%mﬁmnu. . de to an
ica of software intensive - Jeriner & Hajor EDETE
MMMHOMMMWMMM,WWMM an organization was considering

tof
50 d value for cost ?
d the utility and? toctural
existing system and they wanted to ::%a-m_w between competing archilec

well,
. nted to choose b w systems as Wel
o g e upgrade, oww_wsmwwz is also %_u:mm_u_mqm.ﬂmmp Iis key conceps
m:mﬁ.m_mm Mm: %M_MMM = choose among ncEnmmww M not depend on the SE0Z
especially for

and utili
(quality attribute response curves, cost

\l\\\ ”,,

e

i

=
et

144 Software Architectures

Inputs — The inputs of CBAM are as followsg _
(1) The system’s business/mission drivers
(ii) A list of scenarios

(iif) The existing architectural Qonc_:m:ﬁ:o:.

Steps of the CBAM - A process flow dja
fig. 4.2.

Step 1
Collate Scenarios ~ Prioritize to choose top one

g

Step 2
Refine Scenarios — Determine
response levels for best, w

quality attribyge
orst, current and

desired cases of the scenario

Step 3

e ——

—
‘W:.almwm Scenarios — Eliminate half of the scenariog

&

gram for the Ow>?_ i
Bivg.
L]

N

~third Se nHuZeh

Ni3
maoﬁ.:s

N73

Step 4
Assign utility for the current and th

e desired leyels
for each scenarig

“

Step 5

trategies to scenarios and
attribute response Jevels

Map architectural s
determine quality

&

Step 6

d utility value of architectural
Strategy using interpolation

Determine the expecte

- “

Step 7
Calculate total benefit obtained from an
architectura] strategy

]

Step 8

al strategies hased on ROI
COSt constrajnts

Choose architectyr
subject tg

Step 9

Confirm results with intuition

Fig. 4.2 Procesg

Flow Diagram for the CBAM

mngu..a..u

N/6
Scenarjos.

Software Architecture Ana

lysis & cmﬁ.ma
This method includes the following steps —

145

Step 1. Collate Scenarios ~ Collate the

ercise and give the mﬂmwmrwama the chanc

whmmm scenarios based on satisfying the bys;
the top one-third for further study.

Scenarios eliciteq d
€ {0 contribute ne
ness goals of

uring the ATAM
W ones. Prioritize
the system ang choose

Step 2. Refine Scenarios — Refine the Scenarios, focusing on fhej

timulus/response measures. Elicit the Worst, current, desired, and best-case
m:m: ty-attribute-response level for each scenario.
q

Step 3. Prioritize Scenarios - Allocate 100 votes to mmaw.mﬁw.ﬁwoaﬂ to

be distributed among the scenarios, where the ﬂmw&sﬁﬂw voting is based on
nsidering the desired response value for each scenario. ,_,om.n the votes and
nmogm the top 50% of the scenarios for further analysis. Assign a weight of
M 0 to the highest rated scenario. Relative to that mnmnmn..o, assign m._n other
oG weight that becomes the number used in calculating the architectural

strategy’s overall benefit. Make a list of the quality attributes that concern the
stakeholders.

Step 4. Assign Intra-scenario Utility — Umﬁgn the &Eq for mmmw

uality-attribute-response level (worst-case, current, desired, vmﬂémm.mv MM_. M_m M
mnmnmlom., under study. The quality attributes of concern are the ones in the

generated during Step 3.

i i Determine
Step 5. Develop Architectural Strategies for mmnnuuﬁ.“wﬁwwn NM M%Ea
their Expected Oswmﬁ-uﬁluﬁ?wmmmonﬂ WMMMHM.% rs nwawmu i
already developed) architectural strategies tha b gt i
and determine the expected quality-atfribute-response _nﬁwﬁ e N
from implementing these architectural m.m.aﬁm_mm. @ﬁn et e nmn,oa& for
strategy may affect multiple scenarios, this calculation m
each affected scenario. FH Sy
Step 6. Determine the Utility of wum mu%amﬁwnum“qu,\“cnm (that
response -L.Qim by Interpolation — Using the m:oMmaa quality-attribute-
form a utility curve), determine the utility of the mxmum this utility for each
Emuoﬂam level for the architectural strategy. UMMMHME?
relevant quality attribute enumerated in the pre e
Calculate the Total Benefit Obtain t level from the expected
Step 7. Ca ility value of the current I s ununmno.wm
Strategy - Subtract the utility licited previously. Sum b ol
tovol and nonmalize it sing the <oam:wmm all scenarios and releva
particular architectural strategy ac

altributes.

t
Step 8. Choose ?.n::aa.,:_.a_nmmﬂMaMW_
5425.”5 .Awoc Subject to Cost an

Architectural

znmmﬂn_ on

; on b
jes based _ Determine

e Constraints

146 Software Architectures

2 i1e implications of each architectura) strateg,,
the cost and schedule Pt trategy as a ratio of benef; Y. OEQ._E
ROI value for each remaining stralegy elit t Loty

: O Cost e
architectural strategies according to the ROI value and chooge Ea.wma_:
. 0p

Gl

e

until the budget or schedule s exhausted. m

Step 9. Confirm Results with FEW?: = Of the Q:Wmm: archite
strategies, considerwhether they seem to a Hm% with the o_,mNENm:.o:,m i Chiry
goals. If not, consider issues that may have been overlookeq vy dojgy
analysis. If significant 1ssues exist, perform another :mw.mﬂos Of theg, ﬁmw WEM

Outputs — Qutputs of the CBAM are as follows — it

Ebmmﬁommqow:oog&m:.mammmmug.& mmmoﬁmﬁma ooﬁ@,g
... b
and schedule implications | i

(i1) Prioritized architectural m:.ma%mwv based on RO

(iii) The risk of each architectural strategy,
in cost, wmcmmw anid ROI values.

Q..m 0. What .,ﬁ.m the benefits of CBAM ?

- Ans. The benefits that an architectural decision may bring g 4
organization are as important — or perhaps more important — thap the costs,

The CBAM enables you to make informed decisions about mogma
requirements and software invesiments based on an analysis of the @o.ou.os_.n
and architectural H.EE,H,.ommo:m.. of those decisions.

mﬁ. mﬁuﬁm{ E.&Qﬁumweﬁ&m architecture tradeoff analysis method
(ATAM). . :

Ans. The architecture tradeoff analysis method (ATAM) is a spiral model
of architecture design, it is iterative in jts nature and its each iteration is used
to reduce risk that could resylt from competing quality attributes that a software
inherits. ATAM has beeq used for over a decade to evaluate software
architecture in domains ranging from automotive to financial to defense. This
method is designed so that evaluators need not be familiar with the architectu®
or its business goals, t

rm@wassmmanoﬁ yet be constructed, and there H&__Nu,
large number of stakeholders,

l- ' v] : i ‘ Q |
w nﬁ_m%mﬂm _nma.__wmwﬁ»gl;m ATAM requires the ﬁmn_o%m:.ong]
mutual.eooperation of three groups o , .nn,‘
emin host
L The Evaluation Togp, This group is extemnal to the proje¢ ¥
Engaogm 1s being evaluated,
b . (i) Project Decision Makers —
or the amé_ovsa:” Project or ha
| i)
n the archjte

oik
These people are mEﬁoin_dmm g

ve the authority to mandate chang
Architectyre Stakeholders - Stakeholders have <anMm
et performing ag advertised. They are the ones WP

quantified 4 {mmmgzq

Software Archifecture Analysis g

Dmm._.u: 147
ting modifiability
velopers, testers
ththe oneunder ¢
[nputs o the ATAM - Inputs include the : : ;

(i) System’s business/mission drivers

do their job hinges on the architecture vSHo
W h reliability or the like. Stakeholders includsde
ig 4

intainers, users, builders of systems interacting wi
ma

) securty
» Wtegratory
nsideratiop,

(ii) Existing architectural documentation, &
Steps of the ATAM — This method includes the following steps —

Step 1. Present Business Drivers — A E”&ooﬁ mc.owmmvﬂmon (ideally Ew‘ 4
project manager or system customer) a.nmn:.amu éwa:_‘..gzﬂnamm m.o&m are
motivating the %ﬁ?wﬁﬂ: mwac: and amncmmm.mﬁ primary architectural
drivers (e.g., high availability, time to market, or high mnoﬁ_ac.

Step 2. Present Architecture — The architect describes the architecture,
focusing on how it addresses the business drivers. i

Step. 3. Identify Architectural Approaches — ,Ew &%,:.oﬁ anuummmu,
but does not analyze, architectural mﬁﬁaomnrmmJ SR

Step 4. Generate Quality Attribute dm_,ma\.ﬂ,.wmo |1§n mmm__@ mmn.@,m .
that make up system “utility”” (performance, mﬁ@m@&@u m85§ .Enmpmw@:ﬁ
etc.) are specified down to the level of scenarios, anniotatéd @E mm.ﬁw.: an
responses, and prioritized. : s B i gl |

P Step 5. Analyze Architectural Approaches —Based on Em H:mw.wm_%_.:nm ;
factors identified ifi‘the utility tree, the EoEﬁmnEB_,mumemwmu Eﬂ% . nmm
those factors are elicited and analyzed (e.g., an EnEﬁnmEm_ mmmamou.mwﬁmm w
at meeting performance goals will be subjected to m.@mﬁoﬁwnnmm& y.
Architectural risks, sensitivity points, and tradeoff moEﬂ ma.m identified. n.cm. ‘

: Step 6. Brainstorm and Prioritize Scenarios — A wmﬂ.mmn set Mmmwo%m .
is elicited from stakeholders and prioritized through a voting process.

i s—The highest ranked scenario
Step 7. Analyze EnESnEnEb%BnM&M E.W_MH : rmwanaaa colin
are ftreated as test cases — Emw are Em%mw.,.m.mmﬁ wmwwmm&ﬁw points, anid-
previously identified. >a&ﬁ._oum_ approaches, s R E .
tradeoff points may be identified. i . ;
Outputs of the ATAM — Outputs include -
i hes el e
i) List of architectural approac § e omtnioas
M_wﬂ.mﬁﬂo f scenarios (iii) Set of maguuﬁw_mm@n&n qu ‘
ii) List o ' it ,.
i ili (v) List of 118 - :
(iv) Utility tree)58 -
(vi) List of non-risks (vii) List oﬁE
(viii) List of sensitivity points

(ix) List of tradeofTs.

148 Software Architectures

0.12. Why we use architecture tradeoff analysiy methoy Az
i

" Ans. All design, in any ﬁ_..mo.%:.:n. involves tradeoffs; this jg
What is less well understood is the means for making m:wo_.SoQéa:mnn
even optimal tradeoffs. Design decisions are ofien made for * 2l
reasons — strategic business concerns, meeting the COonstrajn n
schedule, using available personnel, and so forth. B
Having a structured method helps ensure that the right Ueds
asked early, during the requirements and design stages %wmﬂ_e
problems can be solved cheaply. It guides users of the method !aa: a_mnogé
—to look for conflicts in the requirements and for resolutions t, he ﬂm_a_é%a
in the software architecture. e these Conflig
In realizing the method, we assume that attribute-specify

ER&%S%? and that each quality attribute has ﬁoﬁﬁmoﬂ.Ho m:m@mmm are
attributes, through specific architectural elements. Ap archite oHonm With othe,
a component, a property of the component, or a PrOpétty of MME_ o_m.Ema is
wm.EdS components that affects some quality attribute, F S H,m_a.aag.n
priority of a process is an architectural element that coyl, e eXample, fhe

The ATAM helps to identi s o B A11eCt perfy
elps to identify these depend . . rnance,

- s P €ncies among attributeg- ;
call tradeoff points. ‘This is the principal difference e ©8; what we
other software analysis techniques — that it explicitly occm.anmu the ATAM and
between multiple attributes, and ermits princi =iy the connection;
i Bt > dnd p principled reasoning about th,

mnevitably result from such connect; : i ¢ e
ections. Other analysis frameworks if

i .)
ey consider connections at all, do so only in an informal fashion or atahigh

“Dteg
oneg 5l

Zma:ggw
oF cay an

'S Willp,

mmgﬁm by multiple attributes.

L13. Wh : :
Q0 at do you understand p Y active reviews for intermediate design

(ARID) ?

Ans, i i ; i
Bfice DmMWM Wonﬂw Mmso.cmm for intermediate designs (ARID) method blends
designs tiat oo s with the >HEu creating a technique for investigating
the Stakeholders g o Y complete. Like the ATAM, the ARID method engages
usabilty - frgg MMM aset of scenarios that are-used to “fest” the designfor
enginers who Euc : SE.E c.éﬁrma the design can be used by the softwar

Stwork with it, The ARID method helps to find issues and

Problems that hj
hinder the successfy] use of the design as currently conceive:

In
U:.m to \.ﬁﬂ:u = Inputs include —
(D A list of seeq scenariog
(i) The exigt; :
Steps or B mﬁﬁﬂm mao:;noaamgmﬂms documentation.
ARID - his methog includes the following steps —

Step 1. Prege

L. nt :

the design anq SNFHMHU@EF_ ~ The lead designer presents an oV
Ough the €xamples. During this time, par

ervieW ¥
%__%%

mo i
gma L_Oﬁcﬂmﬂﬂg—.m \:_m__wm_“m R Dwm.ﬁ Ahm

the ground rule that no questions concerning j ;
o e o ot s e
e design 1S usable” to the developer, not to find out why things were %mm if
Fertain way or 6 learn mcoc.ﬁ the secrets behind .E_Enaoumum the inte %ﬁ a

tep results in a summarized list of potential issues that the designer m%%m_w

his S g 2
T before the design can be considered complete and ready for product;
on,

_m_mﬁ_ﬂﬁmm
Step 2. Brainstorm and Prioritize Scenarios — Participants suggest

scenarios for .:anm the mmmmm.u to solve problems they expect to face, After
ey B athera :nr. set of scenarios, .Emu\ winnow them and then vote on individual
scenarios. BY thier votes, the reviewers actually define a usable design — if the
design performs well under the adopted scenarios, they must agree that it has

wmmmma the review.
Step 3. Apply the Scenarios — Beginning with the scenario that received
the most votes, the facilitator asks the reviewers to craft code (or pseudo-

code) jointly that uses the design services to solve the problem posed by the

scenario. This step is repeated until all scenarios are covered or the time allotied

for the review has ended. :
Output of ARID — The output includes a list of “issues and problems”

preventing successful use of the design. :

0.14. What are the benefits of ARID ?
Ans. ARID helps architecture designers engage stakeholders and get their
buy-in early in the design process. It also informs designers about whether

their design is suitable for the overall system being developed.)
Reviewing a design in its pre-release stage provides valuable early insight
into the design’s viability and allows for timely discovery of errros,
Inconsistencies, and inadequacies. :
0.15. Comparision of ATAM and ARID.
Ans. Comparision of ATAM and ARID is shown in table 4.1.

Table 4.1
S.No.| Description ATAM ARID :
i i itecture Conceptual design .
(i) MM&EQ | Architectur approach, with embryonic
- documentation. ?
(i) | Who Architect, stakeholders [Lead designet, stakeholders.
articipates A icit desired
(iii) Wmao : Elicit drivers and qua- wamoﬂwﬁaawmﬁ m_a e
approach | lities, build utlity ree, [0SeS DV FE
catalog approaches, group 18
perform Euv_”oun:.
based analysis.

150." ,.m.onimwm Architectures

Identified risks, sensi-

Issues ang probj
tivity points, and trade- Cimg

1 Gv). Outputs .
Lo v venting mcooommmscva.

off points. Sage
Approximate | 3 full days of meetings, | 1 day Pre-meegiy
) duration over approx. 2 weeks, | 1 day reviey A M blug
plus unstructured work lng,

e) and communication

between the meetings,

_ w.e\. What do you mean by attribute driven 3
! ‘ ol 5

- Explain.: _

., -Ans. The attribute driven design method (ADD
 generate and test philosophy. It keeps the number of requirements g5 m

. - - safisfiedtoa humanly achievable quantity. ADD is an iterative ethog HMM

)

t be

-eaclriteration, helps the archifect to do the following — et

“ 0w (i) Select an element of the system to design.

Tl (ii) Marshal all the architecturally significant Ho@rwoﬂmam for the

selected element.

w2 (iii) Create and test a design for that selected element. :

‘ .,EE output of ADD is not an architecture complete in every detail, byt ap
architecture in which the main design approaches have been selecteqd and

validated, Ti produces a “workable” architecture carly and quickly, one that

can be given to other project teams so they can begin their work while the

architect or architecture team continues to elaborate and refine,
> ADDisa five-step method are as follows —

i mnmmH Select the Element of the System to, U,mmmnu._ —~ For green-field
%Emﬂ.mu Ew “part” to begin with is simply the entire system. For designs thatare
already partially completed (cithey by external constraints or by previous iterations
Hﬁﬁﬁmw%gu the part is an element that js nqf yet designed. Selecting the next
Qnﬂ@& ¢an proceed in a breadth-figst, depth-first, or mixed manner. :
Step 2. Identify the ASRs for the selected element. i

Step 3. Generate 3 Design Solution for the Selected Element — Using

as existing systems, frameworks, patterns and tactics,
sts.

: urthermore, non-ASR requirements will either
satistied, allocated to children, of indicated as not mommm<mcmm. :
i mﬁu 5. Repeat Steps 1-4 - Until all the ASRs have been satisfied OF _Em”_.
ﬂo archifecture has been elaborated sufficiently for the implementers to use '

) is an _mwﬁmmommou of the.

be

: tE:&ﬂmmum —

Software Architecture Analysis & Design 151

Q.17. Briefly discuss how ADD uses three commons views,

Ans. The ADD uses these three common views are a5 follows - -

(i) Module Decomposition View — Qur discussion above shows how
fite module decomposition view provides oczﬁzma. for holding q@m@o@m._:ms
as they are discovered. z.m._ or data flow relationships maoum.&m modules are
also identified through this view. ot 3 ;

(ii) Concurrency View — In the concurrency view %swnm?mwwm&m
of a system such as parallel mo..:Sﬁom and m§&=onwmncn car-be modeled.
This modeling helps to Em::@ resource contention ?oiﬂmmy‘.wa%mu_n, :
deadlock situations, data consistency issues, and so womu.ugnﬁ._w_mwm the
concurrency in A.system likely leads to 9%9.6& of new ammomﬁ@%mmﬁ.&
the modules, which are recorded in the module view. Itcanalso _mma.B &mm@.ﬁ
of new modules, such as a resource manager, in order to solve _mmwnw;.cm
concurrent access to a scarce resource and the like. Fmis T

* To understand the concurrency in a system, the following use nmmwm are;

3 (a) Two Users doing Similar Things at the mmEWMz 3 = This
helps in recognizing resource contention or data integrity EQEMHE HmﬂwM
garage door example, one user may be closing the door 882&%4,‘, ! m..mjo %
is opening the door from a switch. el
(b) One User Performing QF.EE.W Activities m:ﬁ&naw“”&m .
This helps to uncover data exchange and activity no,EHE vBZEPﬁ. qom”.w »mocav)
a user may be performing diagnostics while mHBEBuQ.Em@ openmg il ’
 (c) Starting Up the System — This gives w.mmoa MMH;MM_MW
permanent running activities in the system and ro@ to initialize them. e
TEE il il i oo teoy. such as m<n%5.w5 para)
helps in deciding on an initialization strategy, Fork Mot w1
everything in sequence or any other model. In oc_“. mﬂﬂmmm:x« s e,
the garage door opener system .amwga on. an s kg iting
information system ? Is the garage door opener &.&MB opening and closing ?
for a signal, or is it started and stopped with every .ooH p £SO
(d) Shutting Down the System — This rn_wM Mo N_H i
of cleaning up, such as achieving and saving a consisten M&m__.w& P
(iii) Deployment View—1f mu i mBnM MMM mwo“n_“ %E%HQE to the
i : iti nsibilities ma . <ohit
o mxﬁmamwmmww:_wwﬂﬂww%m helps to determine and me.w w M_memﬁu e’
R Gm_;mw : he desired qualities. The n_%_oﬁm%. to virtyal thres ;
thilt supronsacisvdE e iew being decomposed 10 o eieais 0
virtual threads of the concurrency SMmmmmmm that travel between Mm%&iﬁ
within a particular processor and Bowm&%m. Thus, it is .am basis JOF 215
initiate the next entry in the mmnzmnmmu.u mvoﬁuna noummmnoa. .
En:og%ﬂgﬁomnﬁ_ m.ﬁ.: %nmn:_

152 Software Architectures

USE, DOMAIN-SPECT

FIC sop
ARCHITECTURE z

Q.18. What do you mean by sofiware reuse ?

Ans. By software reuse, we mean the repeated use of any part fo s
system — documentation, ooamm%rﬁmﬁ requirements, test Cases, tegy da msma
more. Basili encourages us to think of maintenance asreuse. We tafg 0 mﬁ tng
system and reuse parts &, it to build the next version: m:::max he Exﬁsw
that processes and experience can be reused, as can any tangipq orin EMWM_W
product of development. ; gible

Q.19. Discuss the advaniages and a.mma&ca}&hm@ of reus
Sofiware development. (R.GRY,, June
Ans. Advantages of Reused Code —

() Increased Reliability — Reused components that pay, beeq
exercised in working systems should be more reliable than ney, n.ononSw
They have been tried and tested in a variety of different environmentg, Desigy
and implementation faults are discovered and eliminated in the initia] use of the
&E@oumuwu thus reducing the number of failures when the Component is reyseq

(i) Reduced Process Risk — If a component exists, there ig Jess
uncertainty in the costs of reusing that component than in the costs of
development. This is an important factor for Project management as it Teduces
the uncertainties jn project cost estimation. This 1s particularly true when
relatively large components like sub-systems are reused. i

(i) Standards Compliance — Some standards, such as user interface
standards, can be implemented as a set of standard components. For example,
reusable components may be developed to implement menus in a user interface.
All applications present the same menu formats to users. The :%c?@%a
user interface improves reliability as users are legs likely to make mistakes
when presented with a familiar interface,

. (iv) Effective U, of Specialists - Instead of application sp mam___mw
doing the same work on different projects, these specialists can develop reusavs
components which encapsulate thejr knowledge. _

2005, 299

W knnﬁ.mé%&b%&%imﬁlwncm__:mm system to marke
45 possible is often more important thap o<o~m=Qo<o_o~u3n5noﬂm.w

oE.Euo.umE.m Speeds up System production because both developmer
validation time should be reduced.
' v..mm%miummm of Reused Code -

. ‘ &
() Increaseq Maintenance Coggs 1 component SOUCE

elem!
f A¢e costs may be increased as the Hocmmﬁ_wmumn _
ot the system may become increasingly incompatible with system ¢

t asearly

t and

eusing

de is

Software Architectyre Analysis & Design 1 53

(ii) Maintaining a Component Library - Populating 5 COmporent
: and ensuring that software mmﬁ_owﬂum “an use this library qqp X
__Emam?a. Our current techniques for classifying, cataloguing and fetrieving
mu_mﬂﬂ_ma components are immature,
S0 (iii) Lack of Tool haﬁhnl - n>m_m. Sow.mﬂm .mﬁw not support
lopment with reuse. It may be difficult or impossible to integrate thege
ﬁ_mewm éﬂ: a component library system. The software process assumed by these
Mmm_m may not take reuse into account. .
(iv) Finding and h&nﬁ&.ﬁ« wm.tua&_m n.?.%n.:maa = mo?.ﬁ:m
nents have to be discovered in a _.Hg.map understood and sometimes
ki to work in a new environment. Engineers must be reasonably confident
m%ﬁ:% . a component in the library before they will routinely include a
o mno“m.ﬁ search as part of their normal development Pprocess.
ek Non-invented-here Syndrome — Some software engineers
moEnmEnm-wammmn to rewrite components as they Wmmm.ﬁ that Emm can H._BWEMM
the reusable components. This is partly to do with trust an :vmﬁ.% M_u do
MME the fact that writing original software is seen as more challenging
reusing other people’s software. ‘ :
Q.20. Write short note on domain-specific software n~n§m§m. T
Ans. A domain-specific software architecture (DSSA) has been define
as— “ >b assemblage of software components, mﬁmnmmmw%aﬁ MM M_ MMEM%%M MMWM
of task (domain), generalized for effective use m.nnomwonm_uiﬁ&nm s s
in a standardized structure (topology) effective

applications” or, alternately. ; oA
1 “A context for patterns of problem elements, solution elem

situations that define mappings between them.

i 2 nstriction
0.21. Explain domain-specific software architecture with construction

method, : o A S omgii
Ans. Domain-specific software E.nEﬁ.oER nowmw_woomnﬁvon a group of
Rwﬁdsnm requirements and referential mEE”anan its aim is to support the
applications in a specific problem domain, an

application in one specific domain. bl s
e o on ol mappinga problm pcs 03 0L
System development is bas through description OfabSI G of the
space in software Edm%oﬁm%mnc: to implement due Houw.MQ. the development
IS, RN i plemcdition Oute oot divides the problem
P s R sofware arlfestuce cheme in this domai™
method ﬁwmam_._%nw%_ﬂwm—u.wﬂ“ and then realizes the sOIVINBS
space in

ible.
nt more feas!

has proved this kind of software developme

Practice has pr

model,

mains is more feasible,

154 Software Architectures

. Software reuse is easier _.n.%oo_.mo domains. j:d:m: dee
specific domains and abstraction o.w the ooEEo_.ﬁmamEEm
behaviour of the application .&\wﬁm_:m in the domain, it ig Possibe
architecture to other application system development i, the Same M aply iy
reuse the software architecture, and to reduce the complexity omm&mﬂmg ,5 :

Construction Method — Domain-specific software .mgr. ;%Eg
constructed after domain analysis m:a. on the basis of the aoﬂﬁmmz:aogm.;
identify the domain model, we determined Ew scope of domajy, ﬁ_..,maaa.. Th
of an expert in the domain %EE@Bo.E environment. Thep, Sm_g,md,.ea hejy
integration scheme according to the identified domain mq de] nom@_& an
Finally, we constructed the domain architecture and 5 mapping aom%vogna.
for a realizable information framework. The mode] ig shown. i fig' .M_WEEQ

Because a single E-learning system can hardly satisfy E&__i. ac .
application in the teaching process and because it is difficylt to Eﬁo.mmm.smgn_
systems, we put forward construction of domain-specific software E&ﬁwﬂm
oriented to E-learning. Within the restrictions of the architecqy, g
encapsulated the public business logic in the domain into the ‘Sm,wwm”.
architecture and stipulated the AN I

P angp,.
wEm.
a)

standard component interface. | Domain

; % : ~[__Pomain piazer]
Through the plug-in and dynamic [_Amalysis L 7 |
binding of the components, we
built an individualized E-learning p 4] .rTQiEg. Moo
system. In the meantime, the Toniats [))
standardized and opened interface Design “ VFOQE@ESZ:SNEE& .
made reuse of the components and ﬁ |
the system integration possible ferwefonl Domain Architecture | |

and built a flexible E-learning T R
System to support individualized Fig. 4.3 Construction Model of Domain-_
teaching, specific Software Architecture

w8

- 2 s = ; e
P s rg. R = B s
B RO ES e o e
SEIIeen f.?uu.f. ﬂaﬂ?&.ﬂn EEGA, e S
e SR ST r@}f;ﬁmdﬂ.r m..w.u -
A :

. Q.1 w-w.\ram do you understand by software architecture documentation ?
Ans. Architectural .documentation desctibes the structure of & system
through one or more views, each of which identifies a nomnnum.ﬁ of Fmimw&
components and relations among-those ooﬁmomgm. >.nommwﬂmmﬂ is Ecw w_. :
documented visually as some sort of geometrical object, wua.ﬁmuﬂmoﬁ]
coherent unit of functionality. The granularity of components will depend on

the kind of documentation being develeped in some situations m:nosﬁmﬁwmm
may be as large as a major subsystem, in others it might be as small as a sing

object class. Typically components Hmwammme.w system .mmdn.:hnm mﬁ@. as B&&.
modules, computational elements, and Eb.EHﬁ ?oﬁmmmmm.. it
The relations between components are nonﬁumanmﬂ“,_.mwwmw %Mm%ma 4
or m&mmm:@. j%?m:% such relations Eenm.ﬁ what m%mwmuw e oty
are used by other components, and how inter-compo ‘ :

proceeds over time. .. o

Different views are used to represent distinct hmw”wmxw_wﬁm ol
view providing a model of some aspect of the &Wnomm:ngm S o
see, one architectural view might document t nhnmnﬂ el e o
layered description in which the componenis fePr= =" <ystem in ferms Of

d : the structure 01 2 8] R
code, while another view might document represent communicating
its run-time configuratio

1 in which components
processes.

] ar
Different views, or models,

Deciding

jef jobs of 4 50 &)
which views to use is one of the n___mﬂwrn needs for design ﬁwﬁw required
choice of views will depen¢ mqoumﬂ_wmwﬁ four classes of VIEWS
a

5 icall :
this variability there are typically nitectural documents

 of arc
to provide a reasonable set of

ST)

i
; il 1

¥
!

156 Software Architectures

!
i J{
i

i

f 4

/
)

o
—

7

—

(i) Context-based Views = ﬂﬁ.mn indicate the mna_.sm i
system is to be employed, and often Eﬂ:_@ the mcmﬁ_ﬁ domajy, m_mMEg b
determine the system’s overall requirements and businegg Conteyy enty ly
ructyre of 5

(i) Code-based Views — These describe the S
indicating how the system is built out of implementag; §
modules, tables, classes, etc. Such views are particularly USelu) ag1g s
implementation and maintenance. They can also be used to indje, = mﬂ Buide
of abstraction between different parts of the system, and _uﬁuanwg 9 E&&g

under-construction other parts of the system that it uses or that yge i Mmﬁm.s.
but common, case of a code-based view is a layered diagram By w.w _.mmmg.s_.
a system into layers, one can improve portability, Eo&mmgmg and w Oning
use via standard APIs. dseiof
(iii) Run-time Views — These describe the slructure of the System ;
operation, indicating what are the main run- pige 1

time entitieg and hoy ¢,
communicate between each other. Run-time views allow one g Teason a w_
ou

behavioural properties and “quality attributes” gycp as run-time
consumption, performance, throughput, latencies, reliability, etc,

(iv) Hardware-baseqd Views — These describe the physical sefting in
which the system is to run, indicating the number and kinds of processors and
Communication links, The information contained in these VIEWS is often

Tesource

Software Architecturs el

Maintainers To reveal'areas 5 Prosdectic.

¥ pective
2 will affect, ek n_.mu i
(vi) | Designers of other systems |To define the set of Operations provig edl

with which this one must |and required, and the

: Protocols for their
interoperate operation ¥

(vii) | Quality attribute specialists .H.Jo provide the model that drives M_E@.
tical tools such ag Tate-monotonic real-
time schedulability analysis, simulations|
and simulation generators, theorem |
provers, verifiers, etc. These tools require
information about Tesource consump- |
tion, scheduling policies, dependencies, |
and so forth. Architecture documentation
must contain the information necessary
to evaluate a variety of quality attributes
such as security, performance, usability,
availability, and modifiability. Analyses|
for each atfributes have their own infor-
mation needs. L i

To create development teams correspon-

(viii) | Managers

combined with that jn run-time views to derive System performance properties.

0.2. Describe the uses of architecturql
Ans,

ﬁ ding to work assignments annm._m&‘ ﬂ
. 2 lan‘and allocate project resources, an
cur X 5 . .
P to track progress by the various teams.

The uses of architectura] document

, : Ao jon 7 ;
Table 5.1 Uses of Architectural Documentation _ Q-3. What are the principles of sound s 00 0 145000

J _ Ans. The seven principles of sound documentation are mm‘;o 0 .

Stakeholder Use : m : . jnt— A documents read only if

i i . G|] i the Reader’s Viewpoint — : ERte o

(i) >E.E82 and requirements To negotiate and make tradeoffs among “ o5 Mt h\“mmﬁ me“.,.ca is usable by, .its intended audience. Emwﬂahﬂmw

engineers who repregent , HAGEs HID & . terminology is unlikely

customer(s) pr e In streams of consciousness or using arcane

; lted often.
the reader’s needs and thus is unlikely to be read ar consulied c

; ition sometimes
- d ition — While repetition L
0 resolve resource oo:anscum“__% of] m (ii) Avoid Q:a%&%%.hﬂmﬂ:aﬂ 7 WA (. nﬂow.
establish performance and other . o S e g o
runtim 3 nsumption pudgets:| . reinforces a point, its use in technical inform o

Ime resource co R repeats IS

ation is given in table 53

Competing requirements.

Architect ang designers of
constituent parts

: -eeping track of all repea
time. Repetition is the root of inconsistency. Keepmg

P mes Enanw_m»nn
information becomes &
(1) | Implementor difficult, if not impossible; thus, repeated info

: [us
To provide inviolable constraints (2

..o oo are coSEY:
; +consistencies are'co ety
: to avoid these incon L oted as favoid
: wnstreal! over time, and attempts oy tter be stafed a5 SEE
exploitable mnmaoﬂmv on do o o -1 4mbiguity— This principle might bet by its nature, 15
development activities. (iii) Avoid Ambig ¢ architectir®s 57 75 .

[sl ause softwar
(iv) Testers and integrators guity” bec

yiouf
To specify the correct black-box wﬁwﬂ
_o?:w pieces that must fit tog€

_ unintended ambi

;’n/

/)
i

()

i

i

ly

/

i

7
v

/

it
i

i

o

f

i

o,

/.

o

158 Software Architectures

m.BEmco:m in areas that remain undecided until the system is impia

.Zmﬁnwm_ommu if a decision wm_ Swmn, the documentation must nEMEmEma&_
..:mm?vwm:ocm@ so that system stakeholders do not misinter w:.E.u e
mmmEH%RE:on can lead to confusion, Eoo:.oﬂ::Eo%wim:o:@ 2_:. Such
‘during system verification and validation. e Problemg

. () Use a Standard Organization — Usually a document
Eowm Gm: once, if that. Yet, if it is successful, readers é.:_ refer to Mm
nEmm Providing a standard organization not only helps m reader qyje
Eﬁ@wﬂmnou, but also provides the architect with guidance on irmm A7
captured and what has or has not been captured at any given time il

S N0t req
Numergy,

(v) Record Rationale — The reasoning behind the decisiong is just
ks ag

!mportant as the decisions themselves, Architecture documentation lives with

. 3&. Keep bamzimﬁ&&aa Current but Not tpo Current — gmm
,aoojﬂgmmzon should not become out-of-date, disseminating recent
E.oa_bnmamum to certain stakeholders may be ill-advised at times.
U.woﬁEn:Eﬂou remains the final authority, and'stakeholders oommc.: it for
mmammom when making decisions about the mwﬁ@.E._EoE&dm information that
might not be final does not help them. Organizations are well-advised fo
determine a documentation releage plan that is appropriate to their practices
and processes. Z;,

. (vii) NmEm.E.banuEm:Sma: for Fitness of. Purpose — Documentation
Is successful only if it meets jts readers’ needs. Thus, these redders are the

osmmSwo ama_ﬁ,:.sm :m:mm@gmwmmna should be encouraged to provide
feedback about whether it meets their needs. 3

Q.4. Write short note on refinement.

Ans. Actually, refinement is a process of elaboration. A macroscopic
ﬁ..uﬁEmE ow function is decomposed in a stepwise fashion to develop
._:thor.% until programming language statements are reached. One or several
wnchoﬂ.ﬁomm of the given program are decomposed into more detailed
qucn:csm in each step. The concepts of abstraction and refinement aré
complementary.

Software Architecture Uoncsmammo: 159

Q.5. Write short note on context diagram,

Ans. A context diagram is a top-level data floy &mm_.mﬁ D) g
contains one process node (process 0) that generalizes the functiog ofy o -
system in relationship to external entities. € entire

Data flow diagrams (DFD) are used for portraying the overview of e
entire system under development to depicting the detailed processing of a single
transaction. The context-level DFDs show the main sinks, sources, processcs
and scope of the system under development using DFD symbols. The context
diagram is shown in fig. 5.1.

: External External
Entity _ Entity

Process

External \ / External
Entity Entity

Fig. 5.1 Context Diagram

0.6. Write short note on variability.

Ans. Variability is a special form of modifiability. It refers to the ability of
a system and its supporting artifacts such as requirements, test plans and
configuration specifications to support the production of a set of variants that
differ from each other in a preplanned fashion. Varability is an m%anm.mf
important quality attribute in a software product line, where it means the ability
of a core asset to adapt to usages in the different product contexts that are
within the product line scope. The goal of variability in a software product
line is to make it easy to build and maintain products in the Ed,%s. fine over
a period of time. Scenarios for variability will deal with the binding time ofthe

variation and the people time to achieve it.

Q.7. Explain the term document interfaces in brief.

Ans. An interface is a boundary across which two ind
meet and intefact or communicate with each other. The doc
divided into nine parts as shown in fig. 52. ulti

(i) Interface Identify — S&mﬁw il mmmem_” Ha,mw_.m u
identify the individual interfaces to distinguish therd.

also ea <0~m_.0~u H—EHﬂT .

@ﬁmh—&mzﬁ entities
ument interfaces

ple interfaces,
sually means

s the

(ii) Resources Prov i
resources that the element provides.

160 Software Architectures

Section 2C. Element Interface Specification 9

Section 2.C.1. Interface identity

Section 2.C.2. Resources provided
Section 2.C.a. Resource syntax
Section 2.C.b. Resource semantics
Section 2.C.c. Resource usage restrictiong

Section 2.C.3. Locally defined data types

Section 2.C.4. Exception definitions

Section 2.C.5. Variability provided

Section 2.C.6. Quality attribute characteristics

Section 2.C.7. Element requirements

Section 2.C.8. Rationale and design issues

Section 2.C.9.- Usage guide

Fig. 5.2 The Nine Parts of Interface Documents
(a) Resource Syntax — This is the resource’s signature -

(b) Resource Semantics —

Assignment of values of data

Changes 1n state

Events signaled or message sent

how other resources will behave differently in future
humanly observable results

() Resource Usage Restrictions —
initialization requirements
limit on number of actors using resource

T}

adata type oth

er than one provided by the underlying programming language,

th i . e
¢ architect needs to communicate the definition of that type. If it is defined

by another elem :eed

ent, then reference t ition i ment’

. 2 o the : t element’s
documentation is sufficient definition in tha

; (iv) Exception D
raised by th
raised by
resource’s

e . .

Bommmm_w.:omm on the interface. Since the same exception might be

s a.omn m:m resource, if it is convenient to simply list each
Plons but define them in 2 dictionary collected separately.

y, * aye o

the 2@5% W#”a%n@m@ Wésﬂm& by the Interface — Does the interface allow

and how 5@% mm.m nonmm_:.ma 1In some way? These no_._mm:ﬂmﬁmon ﬁmnwamﬁhm
ect the semantics of the interface must be aoocaoa&.

V) Quality Agy;
ttrib - .
t what quality tbute Characteristics — The archit

ity) the interfac tiribute characteristics (such as performan®
¢ makes known to the element’s users.

documen

efinitions — These describe exceptions that:can b¢-

(iii) Data Type Definitions - Tfused if any interface resources mEEo%

. intetactions among the elements, opportunitiss for concurrency,

Software Architecture Documentation 161

(vii) Element Requirements — What the element requires may be
cific named resources provided by other elements. The documentation
spe “: is the same as for resources provided — syntax, semantics, and any

pligation 15 ©
¢ trictions.

usage res
(viii) Rationale and Design Issues — Why these choices the architect
should record the reasons for an elements interface design. The rationale should

explain the motivation behind .ﬁ.rm design, constraints and compromises, what
Jlternatives designs were considered.

(ix) Usage Guide — Item 2 and item 7 document an element’s
semantic information on a per resource basis. This sometimes falls short of
what is needed. In some cases semantics need to be reasoned about in terms
of how a broad number of individual interactions interrelate.

{E BEHAVIOUR OF SOFTWARE ELEMENTS
 SYSTEMS, DOCUMENTATION PACKAGE
IG A SEVEN PART TEMPLATE

'0.8. Write short note on documenting ehaviour.

Ans. Views present structural informatio.: about the system. However,
structural information is not sufficient to allow reasoning about some system
properties behaviour description add information that reveals the ordering of
and time
dependencies of interactions. Behaviour can be documented either about an -,
ensemble of elements working in concert. Exactly what to model will depend
on the type of system being designed. Different modeling techniques and
notations are used depending on the type of analysis to be performed. In S&H
sequence diagrams and state charts are examples of behavioural descriptions.
These notations are widely used. :

0.9. Discuss the documenting behaviour of software element. »
_ tion tha

uires behaviour documentat
ow architecture elements Eﬁ...mﬁ
tions available for documenting .
trace-oriented Janguages, the

Ans. Documenting an architecture req
complements structural views by describing h
with each other. There are two kinds of nota
um.gmioE.. The first kind of notation is called
second is called comprehensive languages. :

A trace describes a mmn_s‘o:,on of activities or interactt
elements of the system. Although it is nounnEme _wo
traces to generate the equivalent ofa noBE.nwmumEM @m
not the intention of trace oriented documentation to 40

ons between &E&:&
describe all ﬁamm&m

havioural Eo%_w.: is

0. The four potations

162 Software Architectures

for documenting traces are use cases, sequence diagramg
3 OOE—S

diagrams and activity diagrams. These four notations chosep asare, Un __ong
I

sample of trace-oriented languages. - 80y
_.ca

(i) Use Cases — These are frequently used to captur
requirement for a system. UML provides a graphical :oﬁ:m the Esomos
diagrams but does not say how the text of a use case should v: for Usg am,“
UML use case diagram can be used effectively as an overvie ¥ Writtey Th
and the behaviour of a system. W Of the moa_.“
The use case description is textual and should contajp th
and brief description, the actor or actors who initjate the cmam USE cage
actors, other actors who participate in the use case ag oo
alternative flows, flow of events, and nonsuccess cases,

=E.=n
Iingg

se Iy

cCondary aCtorg

; y

; @ Sequence Diagram — A UML sequence diagram showe x)
of Eﬁmﬂmo:.o.nm among instances of elements pulled from csmwm,nm:gg
documentation. It shows only the instance participating in n“ the .mwzn.ga
M.MMMMWEQ. A sequence diagram has two dimensions vertical Mhmﬂm:m ot
i Is representing time and horizontal is representing the vario Orizonta],

¢ Interactions are arranged in time sequence from top to g:oM _me_ﬁw.
: ' 10 Dottom. A simple

: ; :
xample of a UML sequence diagram is shown in fig. 5.3
w_,%n Login ;i
Jnm Controller UserDao “loggr |
dmnn i H H b .
1 login _“ m “. . | _“_
i login(...) “. ." i
; checkPwd...)! o
m [] m‘
{ 25 s i
H P “
1 ' : -
i new H User H
I i i |
" : Session 3 [
H . ..
_ “ i
." .‘llllllll-||llll.nlllllnvlllllllll “]
i iy gl __ “
: % E register User Login(...) - > :
ey ¥ [e ! : \H—
_ “_ “. _“ m _
i ! 1 !
Key (UML) . “ .

1]
Execution

ﬁ»ﬁ& _ _O_:.mz i
T

Lifeli
s iy B e Occurrence
ynchronous 3 :
__ Message Asynchronous - Return
Message Message

Fig. 5.3 4 5;
T omele Example of o ypgy, Sequence Diagra

Jine alon
in
feft. Thel 1
arrows. A message can be a method or function call, an event sent through a
queue, OF S
interface of
a synchronol
asynchronous mes

Software Architecture Documentation 153

ects (i.e. element instances) have 4 lifeline drawn as a verijca] dashed
g the time axis. The sequence 1s usually started by an actor on the far
stances interact by sending messages, which are shown as horizonta]

Obj

omething else. The message usually maps to a resource in fhe
the receiver instance. A filled arrowhead on a solid line represents
s message, whereas the open arrowhead represents an
sage. The dashed arrow is a return message. The execution
g the lifeline indicate that the instance is Ednmmmmnm. or -

occurrence bars alon
blocked waiting for a return.
. (iii) Communication Diagram — This diagram shows a graph of
interacting elements and annotates each interaction with a uEnmE.. s
order. Communication diagrams are wsefal whendhe bk i e
Eom:non:m can fulfill the functional requirements. The diagrams are not useful
if the understanding of concurrent actions is important, as when ¢ i ,

performance analysis. : e
(iv) Activity Diagram — These UML diagrams are similar to flow
charts. They show a business process as a sequence of steps and include notation
to express conditional branching and concurrency, as well as to show sending
and receiving events. Arrows between actions indicate the flow of control.
Optionally activity diagrams can indicate the architecture element or actor
performing the actions. Activity diagrams can express coneurrency. Activity
diagrams are useful to broadly describe the steps in a specific workflow.
Comprehensive models show the complete behaviour of structural elements
in contrast to trace notations. : , | sesd ekl
0.10. Discuss about the kanti&:ﬁ&.aa a cross-views. ey
Ans. Cross-view documentation consists of just three major aspects, W uch
we can summarize as how-what-why. Fig. 5.4 shows the summary nw.mamm...
view documentation. o A A
TN

r

Documentation Across Views

How the document is organized —
1.1 View catalog ,
1.2 View template 5 i

What the architectureis— - ; iy e
2.1 System overyiew L] e

n view . it
2.2 Mapping betwee | where they 3PP i 3

2.3 List of elements an '
itis— ARLE

2.4 Project glassary :
Why the architecture is the way

3.1 Rationale

Fig. 5.4 Summary of Cross-vie¥) ol

164 Software Architectures

(D)\How the Documentation is Organized to S¢;
Every suite of architectural documentation needs an jpy
_explain its Organization to a novice stakeholder and to hel

access the information he or she is most interested in The
“how” information —

Ve a rw.wh\h

(a) View Catalog — A view catalog is the reader’y ;
to the views that the architect has chosen to include ir
documentation, There Is one entry in the view catalog for eag}
the documentation suite. Each entry should give the following _

(1) The name of the view and what style it Emﬁ::.mam
(2) A description of the view’s element types, Telatiop types

and properties,
(3) A description of what the view ig for
Zmummmamnﬂ.ﬁwomdmaou about the view do
version, the location of the view document, and the o

1 View given #

cument, such a4 the lategt
wner of the view documen;.
(b) View Template — A view template 15 the Standard
Organization for z view, It helps a reader navigate quickly to 4 section of
interest, and jt helps a writer organize the information anq %Ew:m@&ﬁam
for knowing how muych work is left to do. ;

(i) What the Architectyre g _
about the system whose architecture is pej
VIEWS 10 each other, and ap index of archj
(a) System Overview — Thi
function is, who 1fs users are,

This section proyides Information
ng documented, the relation of the
tectural elements.

Is a short prose description of what
and any important background or
0 provide readers with 3 consistent mental model of

- 10 Which case thig section of'the 4
points to that.

?Yamﬁvm:w between Views _
architecture describe the sam

The element Jjst s simply an index of all ﬂa
the elements that appear in any of the views, along with a pointer to where eac

one is defined. Thig yjjj help stakeholderg look up items of interest quickly.

ms
i The glossary lists and defines ter
unique to the system that have specia) mearn:

Software Architecture Doncsmama.oa 165

i1 also be appreciated by stakeholders, If ap m_u?ommma
. e smw_mmmm pointer to it wiil suffice here. . ;
m—Qu\ ex 3 . 3L
2 the Architecture is the Way it is . P
G ionale — Cross-view rationale explains how the overa]]
(a) Ratio

. ; ight use the rationale
in fact a solution to its requirements. One might use .
’ 2 ;
secture 18 10
architec

ihe . -wi sign choices on
to oxmmm_: (1) The implications of system-wide design ¢ ic o

oo B2 ints, :
y b :m@a:m constrain
/ ements or sa ¢ b
g'the En_::.v The effect on the architecture when-adding a foreseen ‘
2 i : ‘
i sting one. .
3 changing an ex1 ST .
new requirement or The constraints on the developer in HHE.mEmiEm a
(G} e jected e
’ ives that were rejected. :]
: ision alternatives = : d bt
PR er_ the rationale explains why a decision was made and y
In mmﬂﬂnm] 2

amm—.:.._

i i ing it. . ‘ T
implications are in changin . : e
implic Explain documentation ﬁa&ﬂ.ﬂm using a m.wema ﬁw o M o

= .ﬁ. nd beyond using seven ﬁ.m_..ﬁ ﬁmaﬂwﬁ MMMSmam&<mm&..
oy Mpoﬂmwwmmm A view divided five sections and bey ; 2
documentation : .

" into two sections.

i iew i in fig. 5.5.
A template for documenting a view is shown in fig .

: AN

Template for a View

Section 1. Primary Presentation : S
oK | ok

n | e
S0, Bau| -

ction 2. Element Catalog 5
A Section 2.A. H_mE.nEm E_M_ ..“..me
Section 2.B, wa_un_a._umu”.nlunﬁ
Section 2.C. Element wu e
Section 2.D. Element Be'

Section 3. Context Diagram

Properties
Properties .

y ide
Section 4. Varinbility Gul
Section 5. Rutionale

166 Software A rchitectures

The documentation for a view can be

consisting of (hese parts —

Section 1. The Primary
relations ofthe view.

Placed into 4 Standarg P

Presentation — This shows th el

The primary presentation g
about the system in the voc

Section 2. The Elem

elements depicted in the
to this view

hould contain the .
abulary of i iey

A

you wish to convey

ent Catalog

This

Wwere omitted from the primary

introduced angd explained in the catalog. Speci

fi
in following subsection —

¢ parts of th

Section 2.1. Elemen

ts and theijr Properties This
each element in the view

and lists the properties of that e]

Section 2.2 Relations and their Properties — Each; view]
types that it depicts among the elements in that

This divided two.

iew Section 6.1
Section 2.3 Elemen¢ Interface — This section documen information W th
interfaces.
: mmnna..u 2.4 Element Behaviour — Thijs section docum briefly summarize ﬁmﬁ :
behaviour that i not obvious from the Primary presentation the relation to other docu
Section 3. Context Diagram — Thj, shows how the System or porti
the system depicted in this vie

de

vices.
that standard. If we T2
Section 4. Variability Guide — This shows how 1o exercise any vari above describing QUL Ve
points that are 5 part of the architectyre shown in thjg view,

Section 5, Rationale —
why the design is as jt g and
The choice of 5 pattern in
architectural problem ¢hay
choosing it gyer another,

architecture docume

- a5 to UIPOS
to ground any reader as to tae P! ;
related to one another, an aﬁﬁwﬂ% 55

A template for documentation beyong views is shown in fig. 5.6.

=

168 Software Architectures

Section 7.1 System Overview — This section is a short Eo%_;

Qnmoimaosom%om%mﬂmﬁ,m m::ozocu:mcmﬁ.mmbmms%:dwonm_: wmorma::m‘,,
Or constraints. _ .

Section 7.2 Mapping between Views — Because all the views of ap
architecture describe the same system, it stands to reason that any two views
will have much in common. Helping a reader understand the associations
between views will help that reader gain a powerful insight into how the
architecture works as a unified conceptual whole.

Section 7.3 Rationale — This section documents the architectural
decisions that apply to more than one view.

Section 7.4 Directory — The directory is a set of reference material
that helps readers find more information quickly. _

383

Y

Rﬁ_

